File size: 3,287 Bytes
f7601c8
9ac8247
 
a13a8c8
 
7f28b7d
9ac8247
 
f7601c8
a13a8c8
 
 
 
fe0e2ec
a13a8c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7601c8
98ba9be
 
a13a8c8
 
 
98ba9be
9ac8247
a13a8c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac8247
 
 
 
 
 
 
dd4f105
9ac8247
 
 
 
 
 
 
a13a8c8
9ac8247
 
554bf8d
a13a8c8
ac03c7a
a13a8c8
9ac8247
 
 
 
 
 
 
98ba9be
a13a8c8
9ac8247
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
import numpy as np
import tensorflow as tf
import re
from tree_sitter import Language, Parser
import tree_sitter_languages  # Pre-built parsers for multiple languages
from tokenizers import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences

tokenizer = Tokenizer.from_file("syntax_bpe_tokenizer.json")  # New BPE tokenizer
model = tf.keras.models.load_model("crv3.keras")  # CNN model

parser = Parser()
parser.set_language(tree_sitter_languages.get_language("java"))

def syntax_aware_tokenize(code):
    """Tokenizes Java code using Tree-Sitter (AST-based)."""
    tree = parser.parse(bytes(code, "utf8"))
    root_node = tree.root_node
    tokens = []

    def extract_tokens(node):
        """Recursively extracts tokens from AST."""
        if node.child_count == 0:  # Leaf node
            tokens.append(node.text.decode("utf-8"))
        for child in node.children:
            extract_tokens(child)

    extract_tokens(root_node)
    return tokens  # Returns structured syntax tokens

def replace_java_comments(code: str) -> str:
    """Replaces Java comments with placeholders."""
    code = re.sub(r"//.*", " // ", code)  # Replace single-line comments
    code = re.sub(r"/\*[\s\S]*?\*/", " /**/ ", code)  # Replace multi-line comments
    return code.strip()  # Preserve indentation and code structure

def tokenize_java_code(code: str, max_length=100):
    """
    Tokenizes and pads Java code using AST tokenization + BPE.

    Args:
        code (str): Java code snippet.
        max_length (int): Maximum sequence length.

    Returns:
        np.array: Tokenized and padded sequence.
    """
    cleaned_code = replace_java_comments(code)  # Preprocess comments
    syntax_tokens = syntax_aware_tokenize(cleaned_code)  # Extract AST tokens
    encoded = tokenizer.encode(" ".join(syntax_tokens)).ids  # Apply BPE

    # Pad the sequence
    padded_sequence = pad_sequences([encoded], maxlen=max_length, padding="post")[0]
    return np.array(padded_sequence).reshape(1, -1)  # Ensure correct shape for model

def classify_code(input_text, input_file):
    """Classifies Java code readability based on user input."""
    # Load Java file if provided
    if input_file is not None:
        code = input_file.decode("utf-8")  # Read Java file as text
    else:
        code = input_text  # Use text input

    if not code.strip():  # Ensure input is not empty
        return "Please provide a Java code snippet."

    # Tokenize and predict
    tokenized_code = tokenize_java_code(code)
    prediction = model.predict(tokenized_code)[0][0]

    threshold = 0.49  # Adjust threshold for classification
    prediction = (prediction > threshold).astype(int)  # Convert probability to binary

    return "Readable" if prediction == 1 else "Unreadable"

gr.Interface(
    fn=classify_code,
    inputs=[
        gr.Textbox(lines=10, placeholder="Paste Java code here...", label="Java Code Snippet"),
        gr.File(type="binary", label="Upload Java File (.java)")
    ],
    outputs=gr.Text(label="Readability Classification"),
    title="Java Code Readability Classifier (AST + BPE)",
    description="Upload a Java file or paste a Java code snippet to check if it's readable or unreadable.",
    allow_flagging="never"
).launch()