File size: 2,303 Bytes
f7601c8
9ac8247
 
 
 
98ba9be
f7601c8
9ac8247
 
 
f7601c8
98ba9be
 
 
 
 
 
9ac8247
 
 
 
 
 
 
 
 
 
dd4f105
9ac8247
 
 
 
 
 
98ba9be
 
 
9ac8247
98ba9be
9ac8247
 
4c6b685
ac03c7a
 
9ac8247
 
 
 
 
 
 
 
 
98ba9be
9ac8247
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
import numpy as np
import tensorflow as tf
from tokenizers import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
import re

# Load trained tokenizer and model
tokenizer = Tokenizer.from_file("cr_tokenizer.json")
model = tf.keras.models.load_model("crv3.keras")

def replace_java_comments(code: str) -> str:
    """Replaces Java comments with placeholders."""
    code = re.sub(r"//.*", " SINGLE_LINE_COMMENT ", code)  # Replace single-line comments
    code = re.sub(r"/\*[\s\S]*?\*/", " MULTI_LINE_COMMENT ", code)  # Replace multi-line comments
    return code.strip()  # Keep indentation

def tokenize_java_code(code: str, max_length=100):
    """Tokenizes and pads Java code for model input."""
    encoded = tokenizer.encode(code).ids
    padded_sequence = pad_sequences([encoded], maxlen=max_length, padding="post")[0]
    return np.array(padded_sequence).reshape(1, -1)  # Ensure correct shape for model

def classify_code(input_text, input_file):
    """Classifies Java code readability based on user input."""
    # Load Java file if provided
    if input_file is not None:
        code = input_file.decode("utf-8")  # Read Java file as text
    else:
        code = input_text  # Use text input

    if not code.strip():  # Ensure input is not empty
        return "Please provide a Java code snippet."

    # Replace comments before tokenization
    cleaned_code = replace_java_comments(code)

    # Tokenize and predict
    tokenized_code = tokenize_java_code(cleaned_code)
    prediction = model.predict(tokenized_code)[0][0]

    threshold = 0.52 # Increase the threshold for "Readable"
    prediction = (prediction > threshold).astype(int)  # Convert probabilities to binary

    # Convert to readable/unreadable
    return "Readable" if prediction > 0.5 else "Unreadable"

gr.Interface(
    fn=classify_code,
    inputs=[
        gr.Textbox(lines=10, placeholder="Paste Java code here...", label="Java Code Snippet"),
        gr.File(type="binary", label="Upload Java File (.java)")
    ],
    outputs=gr.Text(label="Readability Classification"),
    title="Java Code Readability Classifier",
    description="Upload a Java file or paste a Java code snippet to check if it's readable or unreadable.",
    allow_flagging="never"
).launch()