import gradio as gr from PIL import Image import os import torch import torch.nn.functional as F import torchvision.transforms as transforms import torchvision from torchkeras import plots import numpy as np import yaml from huggingface_hub import hf_hub_download from ultralytics import YOLO device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model = YOLO('Models/haze_detection.pt') model = model.to(device) def load_img (filename): img = Image.open(filename).convert("RGB") return img def process_img(image): y = image#.to(device) with torch.no_grad(): result = model(y) if len(result[0].boxes)>0: vis = plots.plot_detection(img,boxes=result[0].boxes.boxes, class_names=class_names, min_score=0.2) else: vis = img return vis title = "Efficient Hazy Vehicle Detection ✏️[] 🤗" description = ''' ## [Efficient Hazy Vehicle Detection](https://github.com/cidautai) [Paula Garrido Mellado](https://github.com/paugar5) Fundación Cidaut > **Disclaimer:** please remember this is not a product, thus, you will notice some limitations. **This demo expects an image with some degradations.** Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K).
''' examples = [['examples/dusttornado.jpg'], ['examples/foggy.jpg'], ['examples/haze.jpg'], ["examples/mist.jpg"], ["examples/rain_storm.jpg"], ["examples/sand_storm.jpg"], ["examples/snow_storm.jpg"]] css = """ .image-frame img, .image-container img { width: auto; height: auto; max-width: none; } """ demo = gr.Interface( fn = process_img, inputs = [ gr.Image(type = 'pil', label = 'input') ], outputs = [gr.Image(type='pil', label = 'output')], title = title, description = description, examples = examples, css = css ) if __name__ == '__main__': demo.launch()