paugar's picture
Update app.py
fab93aa verified
raw
history blame
2.07 kB
import gradio as gr
from PIL import Image
import os
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvisiona
from torchkeras import plots
import numpy as np
import yaml
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = YOLO('Models/haze_detection.pt')
model = model.to(device)
def load_img (filename):
img = Image.open(filename).convert("RGB")
return img
def process_img(image):
y = image#.to(device)
with torch.no_grad():
result = model(y)
if len(result[0].boxes)>0:
vis = plots.plot_detection(img,boxes=result[0].boxes.boxes,
class_names=class_names, min_score=0.2)
else:
vis = img
return vis
title = "Efficient Hazy Vehicle Detection ✏️[] 🤗"
description = ''' ## [Efficient Hazy Vehicle Detection](https://github.com/cidautai)
[Paula Garrido Mellado](https://github.com/paugar5)
Fundación Cidaut
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations.
**This demo expects an image with some degradations.**
Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K).
<br>
'''
examples = [['examples/dusttornado.jpg'],
['examples/foggy.jpg'],
['examples/haze.jpg'],
["examples/mist.jpg"],
["examples/rain_storm.jpg"],
["examples/sand_storm.jpg"],
["examples/snow_storm.jpg"]]
css = """
.image-frame img, .image-container img {
width: auto;
height: auto;
max-width: none;
}
"""
demo = gr.Interface(
fn = process_img,
inputs = [
gr.Image(type = 'pil', label = 'input')
],
outputs = [gr.Image(type='pil', label = 'output')],
title = title,
description = description,
examples = examples,
css = css
)
if __name__ == '__main__':
demo.launch()