Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import os | |
import torch | |
import torch.nn.functional as F | |
import torchvision.transforms as transforms | |
import torchvisiona | |
from torchkeras import plots | |
import numpy as np | |
import yaml | |
from huggingface_hub import hf_hub_download | |
from ultralytics import YOLO | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
model = YOLO('Models/haze_detection.pt') | |
model = model.to(device) | |
def load_img (filename): | |
img = Image.open(filename).convert("RGB") | |
return img | |
def process_img(image): | |
y = image#.to(device) | |
with torch.no_grad(): | |
result = model(y) | |
if len(result[0].boxes)>0: | |
vis = plots.plot_detection(img,boxes=result[0].boxes.boxes, | |
class_names=class_names, min_score=0.2) | |
else: | |
vis = img | |
return vis | |
title = "Efficient Hazy Vehicle Detection ✏️[] 🤗" | |
description = ''' ## [Efficient Hazy Vehicle Detection](https://github.com/cidautai) | |
[Paula Garrido Mellado](https://github.com/paugar5) | |
Fundación Cidaut | |
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations. | |
**This demo expects an image with some degradations.** | |
Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K). | |
<br> | |
''' | |
examples = [['examples/dusttornado.jpg'], | |
['examples/foggy.jpg'], | |
['examples/haze.jpg'], | |
["examples/mist.jpg"], | |
["examples/rain_storm.jpg"], | |
["examples/sand_storm.jpg"], | |
["examples/snow_storm.jpg"]] | |
css = """ | |
.image-frame img, .image-container img { | |
width: auto; | |
height: auto; | |
max-width: none; | |
} | |
""" | |
demo = gr.Interface( | |
fn = process_img, | |
inputs = [ | |
gr.Image(type = 'pil', label = 'input') | |
], | |
outputs = [gr.Image(type='pil', label = 'output')], | |
title = title, | |
description = description, | |
examples = examples, | |
css = css | |
) | |
if __name__ == '__main__': | |
demo.launch() | |