Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import os | |
import torch | |
import torch.nn.functional as F | |
import torchvision.transforms as transforms | |
import torchvision | |
import numpy as np | |
import yaml | |
from huggingface_hub import hf_hub_download | |
from ultralytics import YOLO | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
model = YOLO('Models/yolov8m.pt') | |
checkpoints = torch.load('Models/haze_detection.pt', map_location=device) | |
model.load_state_dict(checkpoints['model_state_dict']) | |
model = model.to(device) | |
def load_img (filename): | |
img = Image.open(filename).convert("RGB") | |
img_tensor = pil_to_tensor(img) | |
return img_tensor | |
def process_img(image): | |
img = np.array(image) | |
img = img / 255. | |
img = img.astype(np.float32) | |
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
result = model(y) | |
restored_img = result.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy() | |
restored_img = np.clip(restored_img, 0. , 1.) | |
restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8 | |
return Image.fromarray(restored_img) | |
title = "Efficient Hazy Vehicle Detection ✏️[] 🤗" | |
description = ''' ## [Efficient Hazy Vehicle Detection](https://github.com/cidautai) | |
[Paula Garrido Mellado](https://github.com/paugar5) | |
Fundación Cidaut | |
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations. | |
**This demo expects an image with some degradations.** | |
Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K). | |
<br> | |
''' | |