Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.init as init | |
import torch.nn.functional as F | |
try: | |
from .nafnet_utils.arch_util import LayerNorm2d | |
from .nafnet_utils.arch_model import SimpleGate | |
except: | |
from nafnet_utils.arch_util import LayerNorm2d | |
from nafnet_utils.arch_model import SimpleGate | |
class Branch(nn.Module): | |
''' | |
Branch that lasts lonly the dilated convolutions | |
''' | |
def __init__(self, c, DW_Expand, dilation = 1, extra_depth_wise = False): | |
super().__init__() | |
self.dw_channel = DW_Expand * c | |
self.branch = nn.Sequential( | |
nn.Conv2d(c, c, kernel_size=3, padding=1, stride=1, groups=c, bias=True, dilation=1) if extra_depth_wise else nn.Identity(), #optional extra dw | |
nn.Conv2d(in_channels=c, out_channels=self.dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1), | |
nn.Conv2d(in_channels=self.dw_channel, out_channels=self.dw_channel, kernel_size=3, padding=dilation, stride=1, groups=self.dw_channel, | |
bias=True, dilation = dilation) # the dconv | |
) | |
def forward(self, input): | |
return self.branch(input) | |
class EBlock(nn.Module): | |
''' | |
Change this block using Branch | |
''' | |
def __init__(self, c, DW_Expand=2, FFN_Expand=2, dilations = [1], extra_depth_wise = False): | |
super().__init__() | |
#we define the 2 branches | |
self.branches = nn.ModuleList() | |
for dilation in dilations: | |
self.branches.append(Branch(c, DW_Expand, dilation = dilation, extra_depth_wise=extra_depth_wise)) | |
assert len(dilations) == len(self.branches) | |
self.dw_channel = DW_Expand * c | |
self.sca = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0, stride=1, | |
groups=1, bias=True, dilation = 1), | |
) | |
self.sg1 = SimpleGate() | |
self.sg2 = SimpleGate() | |
self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1) | |
ffn_channel = FFN_Expand * c | |
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
self.norm1 = LayerNorm2d(c) | |
self.norm2 = LayerNorm2d(c) | |
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
def forward(self, inp): | |
y = inp | |
x = self.norm1(inp) | |
z = 0 | |
for branch in self.branches: | |
z += branch(x) | |
z = self.sg1(z) | |
x = self.sca(z) * z | |
x = self.conv3(x) | |
y = inp + self.beta * x | |
#second step | |
x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W] | |
x = self.sg2(x) # size [B, C, H, W] | |
x = self.conv5(x) # size [B, C, H, W] | |
return y + x * self.gamma | |
#---------------------------------------------------------------------------------------------- | |
if __name__ == '__main__': | |
img_channel = 3 | |
width = 32 | |
enc_blks = [1, 2, 3] | |
middle_blk_num = 3 | |
dec_blks = [3, 1, 1] | |
dilations = [1, 4, 9] | |
extra_depth_wise = False | |
# net = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num, | |
# enc_blk_nums=enc_blks, dec_blk_nums=dec_blks) | |
net = EBlock(c = img_channel, | |
dilations = dilations, | |
extra_depth_wise=extra_depth_wise) | |
inp_shape = (3, 256, 256) | |
from ptflops import get_model_complexity_info | |
# macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=True) | |
# print('Values of EBlock:') | |
# print(macs, params) | |
channels = 128 | |
resol = 32 | |
ksize = 5 | |
net = FAC(channels=channels, ksize=ksize) | |
inp_shape = (channels, resol, resol) | |
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=True) | |
print('Values of FAC:') | |
print(macs, params) | |