Spaces:
Running
Running
Rename simple_sentiment.py to summarizer_tool.py
Browse files- simple_sentiment.py +0 -98
- summarizer_tool.py +191 -0
simple_sentiment.py
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
-
from smolagents import Tool
|
4 |
-
|
5 |
-
class SimpleSentimentTool(Tool):
|
6 |
-
name = "sentiment_analysis"
|
7 |
-
description = "This tool analyzes the sentiment of a given text."
|
8 |
-
|
9 |
-
inputs = {
|
10 |
-
"text": {
|
11 |
-
"type": "string",
|
12 |
-
"description": "The text to analyze for sentiment"
|
13 |
-
},
|
14 |
-
"model_key": {
|
15 |
-
"type": "string",
|
16 |
-
"description": "The model to use for sentiment analysis",
|
17 |
-
"default": "oliverguhr/german-sentiment-bert",
|
18 |
-
"nullable": True
|
19 |
-
}
|
20 |
-
}
|
21 |
-
# Use a standard authorized type
|
22 |
-
output_type = "string"
|
23 |
-
|
24 |
-
# Available sentiment analysis models
|
25 |
-
models = {
|
26 |
-
"multilingual": "nlptown/bert-base-multilingual-uncased-sentiment",
|
27 |
-
"deberta": "microsoft/deberta-xlarge-mnli",
|
28 |
-
"distilbert": "distilbert-base-uncased-finetuned-sst-2-english",
|
29 |
-
"mobilebert": "lordtt13/emo-mobilebert",
|
30 |
-
"reviews": "juliensimon/reviews-sentiment-analysis",
|
31 |
-
"sbc": "sbcBI/sentiment_analysis_model",
|
32 |
-
"german": "oliverguhr/german-sentiment-bert"
|
33 |
-
}
|
34 |
-
|
35 |
-
def __init__(self, default_model="distilbert", preload=False):
|
36 |
-
"""Initialize with a default model.
|
37 |
-
|
38 |
-
Args:
|
39 |
-
default_model: The default model to use if no model is specified
|
40 |
-
preload: Whether to preload the default model at initialization
|
41 |
-
"""
|
42 |
-
super().__init__()
|
43 |
-
self.default_model = default_model
|
44 |
-
self._classifiers = {}
|
45 |
-
|
46 |
-
# Optionally preload the default model
|
47 |
-
if preload:
|
48 |
-
try:
|
49 |
-
self._get_classifier(self.models[default_model])
|
50 |
-
except Exception as e:
|
51 |
-
print(f"Warning: Failed to preload model: {str(e)}")
|
52 |
-
|
53 |
-
def _get_classifier(self, model_id):
|
54 |
-
"""Get or create a classifier for the given model ID."""
|
55 |
-
if model_id not in self._classifiers:
|
56 |
-
try:
|
57 |
-
print(f"Loading model: {model_id}")
|
58 |
-
self._classifiers[model_id] = pipeline(
|
59 |
-
"text-classification",
|
60 |
-
model=model_id,
|
61 |
-
top_k=None # Return all scores
|
62 |
-
)
|
63 |
-
except Exception as e:
|
64 |
-
print(f"Error loading model {model_id}: {str(e)}")
|
65 |
-
# Fall back to distilbert if available
|
66 |
-
if model_id != self.models["distilbert"]:
|
67 |
-
print("Falling back to distilbert model...")
|
68 |
-
return self._get_classifier(self.models["distilbert"])
|
69 |
-
else:
|
70 |
-
# Last resort - if even distilbert fails
|
71 |
-
print("Critical error: Could not load default model")
|
72 |
-
raise RuntimeError(f"Failed to load any sentiment model: {str(e)}")
|
73 |
-
return self._classifiers[model_id]
|
74 |
-
|
75 |
-
def forward(self, text: str, model_key="oliverguhr/german-sentiment-bert"):
|
76 |
-
"""Process input text and return sentiment predictions."""
|
77 |
-
try:
|
78 |
-
# Determine which model to use
|
79 |
-
model_key = model_key or self.default_model
|
80 |
-
model_id = self.models.get(model_key, self.models[self.default_model])
|
81 |
-
|
82 |
-
# Get the classifier
|
83 |
-
classifier = self._get_classifier(model_id)
|
84 |
-
|
85 |
-
# Get predictions
|
86 |
-
prediction = classifier(text)
|
87 |
-
|
88 |
-
# Format as a dictionary
|
89 |
-
result = {}
|
90 |
-
for item in prediction[0]:
|
91 |
-
result[item['label']] = float(item['score'])
|
92 |
-
|
93 |
-
# Convert to JSON string for output
|
94 |
-
import json
|
95 |
-
return json.dumps(result, indent=2)
|
96 |
-
except Exception as e:
|
97 |
-
print(f"Error in sentiment analysis: {str(e)}")
|
98 |
-
return json.dumps({"error": str(e)}, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
summarizer_tool.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents import Tool
|
2 |
+
from typing import Dict, Any, Optional
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
# Suppress unnecessary warnings
|
6 |
+
warnings.filterwarnings("ignore")
|
7 |
+
|
8 |
+
class TextSummarizerTool(Tool):
|
9 |
+
name = "text_summarizer"
|
10 |
+
description = """
|
11 |
+
Summarizes text using various summarization methods and models.
|
12 |
+
This tool can generate concise summaries of longer texts while preserving key information.
|
13 |
+
It supports different summarization models and customizable parameters.
|
14 |
+
"""
|
15 |
+
inputs = {
|
16 |
+
"text": {
|
17 |
+
"type": "string",
|
18 |
+
"description": "The text to be summarized",
|
19 |
+
},
|
20 |
+
"model": {
|
21 |
+
"type": "string",
|
22 |
+
"description": "Summarization model to use (default: 'facebook/bart-large-cnn')",
|
23 |
+
"nullable": True
|
24 |
+
},
|
25 |
+
"max_length": {
|
26 |
+
"type": "integer",
|
27 |
+
"description": "Maximum length of the summary in tokens (default: 130)",
|
28 |
+
"nullable": True
|
29 |
+
},
|
30 |
+
"min_length": {
|
31 |
+
"type": "integer",
|
32 |
+
"description": "Minimum length of the summary in tokens (default: 30)",
|
33 |
+
"nullable": True
|
34 |
+
},
|
35 |
+
"style": {
|
36 |
+
"type": "string",
|
37 |
+
"description": "Style of summary: 'concise', 'detailed', or 'bullet_points' (default: 'concise')",
|
38 |
+
"nullable": True
|
39 |
+
}
|
40 |
+
}
|
41 |
+
output_type = "string"
|
42 |
+
|
43 |
+
def __init__(self):
|
44 |
+
"""Initialize the Text Summarizer Tool with default settings."""
|
45 |
+
super().__init__()
|
46 |
+
self.default_model = "facebook/bart-large-cnn"
|
47 |
+
self.available_models = {
|
48 |
+
"facebook/bart-large-cnn": "BART CNN (good for news)",
|
49 |
+
"sshleifer/distilbart-cnn-12-6": "DistilBART (faster, smaller)",
|
50 |
+
"google/pegasus-xsum": "Pegasus (extreme summarization)",
|
51 |
+
"facebook/bart-large-xsum": "BART XSum (very concise)",
|
52 |
+
"philschmid/bart-large-cnn-samsum": "BART SamSum (good for conversations)"
|
53 |
+
}
|
54 |
+
# Pipeline will be lazily loaded
|
55 |
+
self._pipeline = None
|
56 |
+
|
57 |
+
def _load_pipeline(self, model_name: str):
|
58 |
+
"""Load the summarization pipeline with the specified model."""
|
59 |
+
try:
|
60 |
+
from transformers import pipeline
|
61 |
+
import torch
|
62 |
+
|
63 |
+
# Try to detect if GPU is available
|
64 |
+
device = 0 if torch.cuda.is_available() else -1
|
65 |
+
|
66 |
+
# Load the summarization pipeline
|
67 |
+
self._pipeline = pipeline(
|
68 |
+
"summarization",
|
69 |
+
model=model_name,
|
70 |
+
device=device
|
71 |
+
)
|
72 |
+
return True
|
73 |
+
except Exception as e:
|
74 |
+
print(f"Error loading model {model_name}: {str(e)}")
|
75 |
+
try:
|
76 |
+
# Fall back to default model
|
77 |
+
from transformers import pipeline
|
78 |
+
import torch
|
79 |
+
device = 0 if torch.cuda.is_available() else -1
|
80 |
+
self._pipeline = pipeline(
|
81 |
+
"summarization",
|
82 |
+
model=self.default_model,
|
83 |
+
device=device
|
84 |
+
)
|
85 |
+
return True
|
86 |
+
except Exception as fallback_error:
|
87 |
+
print(f"Error loading fallback model: {str(fallback_error)}")
|
88 |
+
return False
|
89 |
+
|
90 |
+
def _format_as_bullets(self, summary: str) -> str:
|
91 |
+
"""Format a summary as bullet points."""
|
92 |
+
# Split the summary into sentences
|
93 |
+
import re
|
94 |
+
sentences = re.split(r'(?<=[.!?])\s+', summary)
|
95 |
+
sentences = [s.strip() for s in sentences if s.strip()]
|
96 |
+
|
97 |
+
# Format as bullet points
|
98 |
+
bullet_points = []
|
99 |
+
for sentence in sentences:
|
100 |
+
# Skip very short sentences that might be artifacts
|
101 |
+
if len(sentence) < 15:
|
102 |
+
continue
|
103 |
+
bullet_points.append(f"• {sentence}")
|
104 |
+
|
105 |
+
return "\n".join(bullet_points)
|
106 |
+
|
107 |
+
def forward(self, text: str, model: str = None, max_length: int = None, min_length: int = None, style: str = None) -> str:
|
108 |
+
"""
|
109 |
+
Summarize the input text.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
text: The text to summarize
|
113 |
+
model: Summarization model to use
|
114 |
+
max_length: Maximum summary length in tokens
|
115 |
+
min_length: Minimum summary length in tokens
|
116 |
+
style: Style of summary ('concise', 'detailed', or 'bullet_points')
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
Summarized text
|
120 |
+
"""
|
121 |
+
# Set default values if parameters are None
|
122 |
+
if model is None:
|
123 |
+
model = self.default_model
|
124 |
+
if max_length is None:
|
125 |
+
max_length = 130
|
126 |
+
if min_length is None:
|
127 |
+
min_length = 30
|
128 |
+
if style is None:
|
129 |
+
style = "concise"
|
130 |
+
|
131 |
+
# Validate model choice
|
132 |
+
if model not in self.available_models:
|
133 |
+
return f"Model '{model}' not recognized. Available models: {', '.join(self.available_models.keys())}"
|
134 |
+
|
135 |
+
# Load the model if not already loaded or if different from current
|
136 |
+
if self._pipeline is None or (hasattr(self._pipeline, 'model') and self._pipeline.model.name_or_path != model):
|
137 |
+
if not self._load_pipeline(model):
|
138 |
+
return "Failed to load summarization model. Please try a different model."
|
139 |
+
|
140 |
+
# Adjust parameters based on style
|
141 |
+
if style == "concise":
|
142 |
+
max_length = min(100, max_length)
|
143 |
+
min_length = min(30, min_length)
|
144 |
+
elif style == "detailed":
|
145 |
+
max_length = max(150, max_length)
|
146 |
+
min_length = max(50, min_length)
|
147 |
+
|
148 |
+
# Ensure text is not too short
|
149 |
+
if len(text.split()) < 20:
|
150 |
+
return "The input text is too short to summarize effectively."
|
151 |
+
|
152 |
+
# Perform summarization
|
153 |
+
try:
|
154 |
+
# Truncate very long inputs if needed (model dependent)
|
155 |
+
max_input_length = 1024 # Most models have limits around 1024-2048 tokens
|
156 |
+
words = text.split()
|
157 |
+
if len(words) > max_input_length:
|
158 |
+
text = " ".join(words[:max_input_length])
|
159 |
+
note = "\n\nNote: The input was truncated due to length limits."
|
160 |
+
else:
|
161 |
+
note = ""
|
162 |
+
|
163 |
+
summary = self._pipeline(
|
164 |
+
text,
|
165 |
+
max_length=max_length,
|
166 |
+
min_length=min_length,
|
167 |
+
do_sample=False
|
168 |
+
)
|
169 |
+
|
170 |
+
result = summary[0]['summary_text']
|
171 |
+
|
172 |
+
# Format the result based on style
|
173 |
+
if style == "bullet_points":
|
174 |
+
result = self._format_as_bullets(result)
|
175 |
+
|
176 |
+
# Add metadata
|
177 |
+
metadata = f"\n\nSummarized using: {self.available_models.get(model, model)}"
|
178 |
+
|
179 |
+
return result + metadata + note
|
180 |
+
|
181 |
+
except Exception as e:
|
182 |
+
return f"Error summarizing text: {str(e)}"
|
183 |
+
|
184 |
+
def get_available_models(self) -> Dict[str, str]:
|
185 |
+
"""Return the dictionary of available models with descriptions."""
|
186 |
+
return self.available_models
|
187 |
+
|
188 |
+
# Example usage:
|
189 |
+
# summarizer = TextSummarizerTool()
|
190 |
+
# result = summarizer("Long text goes here...", model="facebook/bart-large-cnn", style="bullet_points")
|
191 |
+
# print(result)
|