Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,15 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
|
5 |
# Define the model names and mappings
|
6 |
MODEL_MAPPING = {
|
7 |
-
"text2shellcommands": "
|
8 |
-
"pentest_ai": "
|
9 |
}
|
10 |
|
11 |
# Sidebar for model selection
|
@@ -18,13 +22,9 @@ def select_model():
|
|
18 |
@st.cache_resource
|
19 |
def load_model_and_tokenizer(model_name):
|
20 |
try:
|
21 |
-
# Use a fallback model for testing
|
22 |
-
if model_name == "Canstralian/text2shellcommands":
|
23 |
-
model_name = "t5-small"
|
24 |
-
|
25 |
# Load the tokenizer and model
|
26 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
-
if "seq2seq" in model_name
|
28 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
29 |
else:
|
30 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
@@ -38,7 +38,7 @@ def load_model_and_tokenizer(model_name):
|
|
38 |
# Handle predictions
|
39 |
def predict_with_model(user_input, model, tokenizer, model_choice):
|
40 |
if model_choice == "text2shellcommands":
|
41 |
-
# Generate shell commands
|
42 |
inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True)
|
43 |
with torch.no_grad():
|
44 |
outputs = model.generate(**inputs)
|
@@ -79,4 +79,4 @@ def main():
|
|
79 |
|
80 |
|
81 |
if __name__ == "__main__":
|
82 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import (
|
3 |
+
AutoTokenizer,
|
4 |
+
AutoModelForSequenceClassification,
|
5 |
+
AutoModelForSeq2SeqLM,
|
6 |
+
)
|
7 |
import torch
|
8 |
|
9 |
# Define the model names and mappings
|
10 |
MODEL_MAPPING = {
|
11 |
+
"text2shellcommands": "t5-small", # Example seq2seq model
|
12 |
+
"pentest_ai": "bert-base-uncased", # Example sequence classification model
|
13 |
}
|
14 |
|
15 |
# Sidebar for model selection
|
|
|
22 |
@st.cache_resource
|
23 |
def load_model_and_tokenizer(model_name):
|
24 |
try:
|
|
|
|
|
|
|
|
|
25 |
# Load the tokenizer and model
|
26 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
+
if "t5" in model_name or "seq2seq" in model_name:
|
28 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
29 |
else:
|
30 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
38 |
# Handle predictions
|
39 |
def predict_with_model(user_input, model, tokenizer, model_choice):
|
40 |
if model_choice == "text2shellcommands":
|
41 |
+
# Generate shell commands (seq2seq task)
|
42 |
inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True)
|
43 |
with torch.no_grad():
|
44 |
outputs = model.generate(**inputs)
|
|
|
79 |
|
80 |
|
81 |
if __name__ == "__main__":
|
82 |
+
main()
|