Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,6 @@ import streamlit as st
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
|
3 |
import torch
|
4 |
|
5 |
-
# Sidebar for user input
|
6 |
-
st.sidebar.header("Model Configuration")
|
7 |
-
model_choice = st.sidebar.selectbox("Select a model", [
|
8 |
-
"CyberAttackDetection",
|
9 |
-
"text2shellcommands",
|
10 |
-
"pentest_ai"
|
11 |
-
])
|
12 |
-
|
13 |
# Define the model names
|
14 |
model_mapping = {
|
15 |
"CyberAttackDetection": "Canstralian/CyberAttackDetection",
|
@@ -17,10 +9,6 @@ model_mapping = {
|
|
17 |
"pentest_ai": "Canstralian/pentest_ai"
|
18 |
}
|
19 |
|
20 |
-
model_name = model_mapping.get(model_choice, "Canstralian/CyberAttackDetection")
|
21 |
-
|
22 |
-
# Load model and tokenizer on demand
|
23 |
-
@st.cache_resource
|
24 |
def load_model(model_name):
|
25 |
try:
|
26 |
# Fallback to a known model for debugging
|
@@ -39,32 +27,48 @@ def load_model(model_name):
|
|
39 |
st.error(f"Error loading model: {e}")
|
40 |
return None, None
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
user_input = st.text_area("Enter text:")
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
if model_choice == "text2shellcommands":
|
52 |
-
# For text2shellcommands model, generate shell commands
|
53 |
-
inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True)
|
54 |
-
with torch.no_grad():
|
55 |
-
outputs = model.generate(**inputs)
|
56 |
-
generated_command = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
57 |
-
st.write(f"Generated Shell Command: {generated_command}")
|
58 |
-
|
59 |
-
else:
|
60 |
-
# For CyberAttackDetection and pentest_ai models, perform classification
|
61 |
inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True)
|
62 |
with torch.no_grad():
|
63 |
outputs = model(**inputs)
|
64 |
-
|
65 |
-
|
66 |
-
st.
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
|
3 |
import torch
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
# Define the model names
|
6 |
model_mapping = {
|
7 |
"CyberAttackDetection": "Canstralian/CyberAttackDetection",
|
|
|
9 |
"pentest_ai": "Canstralian/pentest_ai"
|
10 |
}
|
11 |
|
|
|
|
|
|
|
|
|
12 |
def load_model(model_name):
|
13 |
try:
|
14 |
# Fallback to a known model for debugging
|
|
|
27 |
st.error(f"Error loading model: {e}")
|
28 |
return None, None
|
29 |
|
30 |
+
def validate_input(user_input):
|
31 |
+
if not user_input:
|
32 |
+
st.error("Please enter some text for prediction.")
|
33 |
+
return False
|
34 |
+
return True
|
|
|
35 |
|
36 |
+
def make_prediction(model, tokenizer, user_input):
|
37 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True)
|
39 |
with torch.no_grad():
|
40 |
outputs = model(**inputs)
|
41 |
+
return outputs
|
42 |
+
except Exception as e:
|
43 |
+
st.error(f"Error making prediction: {e}")
|
44 |
+
return None
|
45 |
+
|
46 |
+
def main():
|
47 |
+
st.sidebar.header("Model Configuration")
|
48 |
+
model_choice = st.sidebar.selectbox("Select a model", [
|
49 |
+
"CyberAttackDetection",
|
50 |
+
"text2shellcommands",
|
51 |
+
"pentest_ai"
|
52 |
+
])
|
53 |
+
|
54 |
+
model_name = model_mapping.get(model_choice, "Canstralian/CyberAttackDetection")
|
55 |
+
|
56 |
+
tokenizer, model = load_model(model_name)
|
57 |
+
|
58 |
+
st.title(f"{model_choice} Model")
|
59 |
+
user_input = st.text_area("Enter text:")
|
60 |
+
|
61 |
+
if validate_input(user_input) and model is not None and tokenizer is not None:
|
62 |
+
outputs = make_prediction(model, tokenizer, user_input)
|
63 |
+
if outputs is not None:
|
64 |
+
if model_choice == "text2shellcommands":
|
65 |
+
generated_command = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
66 |
+
st.write(f"Generated Shell Command: {generated_command}")
|
67 |
+
else:
|
68 |
+
logits = outputs.logits
|
69 |
+
predicted_class = torch.argmax(logits, dim=-1).item()
|
70 |
+
st.write(f"Predicted Class: {predicted_class}")
|
71 |
+
st.write(f"Logits: {logits}")
|
72 |
|
73 |
+
if __name__ == "__main__":
|
74 |
+
main()
|