Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM | |
import torch | |
# Sidebar for user input | |
st.sidebar.header("Model Configuration") | |
model_choice = st.sidebar.selectbox("Select a model", [ | |
"CyberAttackDetection", | |
"text2shellcommands", | |
"pentest_ai" | |
]) | |
# Define the model names | |
model_mapping = { | |
"CyberAttackDetection": "Canstralian/CyberAttackDetection", | |
"text2shellcommands": "Canstralian/text2shellcommands", | |
"pentest_ai": "Canstralian/pentest_ai" | |
} | |
model_name = model_mapping.get(model_choice, "Canstralian/CyberAttackDetection") | |
# Load model and tokenizer on demand | |
def load_model(model_name): | |
try: | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
if model_name == "Canstralian/text2shellcommands": | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
else: | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
return tokenizer, model | |
except Exception as e: | |
st.error(f"Error loading model: {e}") | |
return None, None | |
# Load the model and tokenizer | |
tokenizer, model = load_model(model_name) | |
# Input text box in the main panel | |
st.title(f"{model_choice} Model") | |
user_input = st.text_area("Enter text:") | |
# Make prediction if user input is provided | |
if user_input and model and tokenizer: | |
if model_choice == "text2shellcommands": | |
# For text2shellcommands model, generate shell commands | |
inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True) | |
with torch.no_grad(): | |
outputs = model.generate(**inputs) | |
generated_command = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.write(f"Generated Shell Command: {generated_command}") | |
else: | |
# For CyberAttackDetection and pentest_ai models, perform classification | |
inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=-1).item() | |
st.write(f"Predicted Class: {predicted_class}") | |
st.write(f"Logits: {logits}") | |
else: | |
st.info("Please enter some text for prediction.") | |