File size: 46,834 Bytes
2b18b2c
7fb286d
bcae4e2
7fb286d
 
 
 
 
 
 
45d6af3
c1ad2a1
45d6af3
 
 
b871fd6
 
 
 
 
 
 
 
bb04c63
a953180
0f1a97c
a953180
 
 
 
0095ae9
6a8393c
d7b6536
6a8393c
 
 
a953180
0095ae9
 
 
2c223b3
bcae4e2
 
 
 
0095ae9
2c223b3
0095ae9
 
bcae4e2
0095ae9
 
 
 
d7b6536
 
 
 
 
 
0095ae9
 
 
 
 
 
 
 
d7b6536
0f1a97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0095ae9
2c223b3
0095ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcae4e2
0095ae9
 
 
 
 
 
 
 
 
 
bcae4e2
0095ae9
 
 
 
 
 
 
 
 
 
 
 
bcae4e2
2c223b3
0095ae9
 
a953180
 
0095ae9
bcae4e2
0095ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a953180
 
 
 
0095ae9
a953180
 
 
 
 
 
12d0eea
6a8393c
a953180
 
0095ae9
a953180
 
 
 
 
 
0095ae9
 
 
 
 
a953180
 
0095ae9
 
 
 
 
 
 
 
 
 
 
 
 
a953180
0095ae9
 
 
 
a953180
0095ae9
 
 
 
 
 
 
 
 
71e2885
0095ae9
 
 
71e2885
0095ae9
2c223b3
0095ae9
 
a953180
0095ae9
 
 
a953180
0095ae9
 
 
 
 
 
a953180
2c223b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcae4e2
2c223b3
 
 
 
 
 
 
 
 
 
 
12d0eea
d7b6536
 
 
 
 
 
 
 
 
 
 
 
 
 
2c223b3
a953180
0095ae9
 
0f1a97c
d7b6536
a953180
 
0095ae9
 
 
 
 
 
 
bcae4e2
0f1a97c
0095ae9
 
0f1a97c
bcae4e2
71e2885
 
 
 
 
0095ae9
 
71e2885
 
 
 
 
bcae4e2
71e2885
 
 
 
 
 
 
 
 
0095ae9
 
 
 
0f1a97c
71e2885
 
0095ae9
 
71e2885
 
0f1a97c
71e2885
0095ae9
 
71e2885
0095ae9
0f1a97c
71e2885
0095ae9
 
71e2885
 
0095ae9
 
 
71e2885
2c223b3
 
bcae4e2
2c223b3
 
 
 
0095ae9
 
71e2885
0095ae9
 
71e2885
 
0095ae9
 
 
 
71e2885
0095ae9
 
 
 
 
71e2885
0095ae9
 
71e2885
 
0095ae9
 
 
 
 
 
 
 
 
2c223b3
 
 
 
 
 
 
 
 
 
 
 
 
0095ae9
71e2885
0f1a97c
bcae4e2
2c223b3
 
71e2885
0095ae9
71e2885
 
0095ae9
 
71e2885
 
0095ae9
71e2885
0095ae9
 
71e2885
 
0095ae9
71e2885
 
0095ae9
 
71e2885
0095ae9
 
bcae4e2
0095ae9
 
 
 
 
bcae4e2
0095ae9
 
 
 
 
bcae4e2
0095ae9
 
 
 
 
 
71e2885
0095ae9
 
71e2885
 
0095ae9
 
 
 
 
 
71e2885
0095ae9
 
71e2885
0095ae9
 
71e2885
0095ae9
 
71e2885
0095ae9
 
71e2885
 
0095ae9
71e2885
0095ae9
 
 
 
 
71e2885
0095ae9
 
71e2885
 
 
0095ae9
 
71e2885
0095ae9
 
71e2885
0095ae9
 
 
bcae4e2
2c223b3
0095ae9
71e2885
2c223b3
 
 
 
 
 
bcae4e2
0095ae9
 
 
 
bcae4e2
0095ae9
 
 
0f1a97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a953180
45d6af3
a953180
0095ae9
a953180
0095ae9
 
 
 
 
 
 
 
 
 
 
 
 
a953180
2c223b3
bcae4e2
 
0095ae9
bcae4e2
0095ae9
 
 
a953180
 
 
bcae4e2
 
 
 
 
 
a953180
 
 
 
 
 
 
bcae4e2
a953180
d7b6536
0095ae9
d7b6536
 
 
 
 
bcae4e2
d7b6536
 
 
0095ae9
bcae4e2
 
d7b6536
0f1a97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432a60b
0f1a97c
 
 
1b33af5
71e2885
1b33af5
 
260f3d0
1b33af5
 
 
 
 
 
 
f5f80ba
 
 
 
 
 
 
 
1b33af5
 
 
 
 
 
 
 
 
 
 
260f3d0
3226415
71e2885
 
260f3d0
3226415
 
 
 
b871fd6
 
3226415
b871fd6
 
 
260f3d0
3226415
 
 
 
 
 
 
b871fd6
3226415
b871fd6
 
 
 
 
 
 
3226415
b871fd6
 
260f3d0
 
 
 
 
 
 
3226415
260f3d0
 
 
 
 
 
 
 
 
 
3226415
 
 
 
 
 
 
71e2885
3226415
 
 
260f3d0
 
 
 
 
 
3226415
260f3d0
 
 
 
 
 
 
 
 
b871fd6
3226415
260f3d0
b871fd6
3226415
b871fd6
3226415
 
 
 
b871fd6
3226415
 
b871fd6
3226415
 
 
 
b871fd6
3226415
b871fd6
 
d7b6536
71e2885
d7b6536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e2885
d7b6536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e65f0b
d7b6536
 
 
2e65f0b
 
d7b6536
b0490f8
 
 
bcae4e2
b0490f8
 
 
 
0f1a97c
a953180
bb04c63
 
45d6af3
0f1a97c
 
 
45d6af3
 
b871fd6
 
a953180
2b5f1d4
d7b6536
b871fd6
2c223b3
 
 
 
 
 
 
b871fd6
 
2b5f1d4
b871fd6
d7b6536
 
 
 
 
 
bb04c63
 
 
 
 
d7b6536
 
 
 
bb04c63
 
 
 
 
d7b6536
 
2b5f1d4
5cfae69
bcae4e2
2c223b3
 
 
bcae4e2
a953180
5cfae69
3472383
82fb410
5cfae69
 
 
b871fd6
3472383
 
 
 
 
 
 
432a60b
 
 
 
 
 
 
 
 
 
6239bbc
a0d49a3
 
 
6239bbc
809cdad
3472383
809cdad
b871fd6
809cdad
0f1a97c
45d6af3
 
b871fd6
a953180
1b33af5
 
a953180
1b33af5
 
b871fd6
1b33af5
b871fd6
b0490f8
 
 
 
 
 
 
 
 
a953180
82fb410
b0490f8
 
 
 
 
 
b871fd6
a953180
0f1a97c
1b33af5
b871fd6
0f1a97c
 
b871fd6
c1ad2a1
 
0f1a97c
89450f2
0f1a97c
c1ad2a1
22efa51
45d6af3
6a8393c
a7360b6
 
 
 
 
bcae4e2
 
 
 
 
 
 
 
4ae3df6
b871fd6
a7360b6
 
 
 
 
 
 
 
4ae3df6
 
 
0f1a97c
 
 
 
b871fd6
 
07cdc1e
b871fd6
 
 
 
 
45d6af3
a0cad87
 
1b33af5
 
 
 
 
 
 
12d0eea
 
 
07cdc1e
e1d6be0
45d6af3
0f570bc
e52dbe4
4ae3df6
 
 
0f1a97c
 
4ae3df6
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
import os
import gradio_client.utils as client_utils
# Monkey path gradio_client issue 
_original = client_utils._json_schema_to_python_type
def _safe_json_schema_to_python_type(schema, defs=None):
    if isinstance(schema, bool):
        return "Any"
    return _original(schema, defs)
client_utils._json_schema_to_python_type = _safe_json_schema_to_python_type
client_utils.json_schema_to_python_type  = _safe_json_schema_to_python_type
import gradio as gr
import gradio.blocks
import re
import pandas as pd
from io import StringIO
import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem, Draw
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from io import BytesIO
import tempfile
from rdkit import Chem
from swisssidechain import all_aminos

class PeptideAnalyzer:
    def __init__(self):
        self.bond_patterns = [
            #(r'OC\(=O\)', 'ester'),  # Ester bond
            (r'N\(C\)C\(=O\)', 'n_methyl'),  # N-methylated peptide bond
            (r'N[0-9]C\(=O\)', 'proline'),  # Proline peptide bond
            (r'NC\(=O\)', 'peptide'),  # Standard peptide bond
            (r'C\(=O\)N\(C\)', 'n_methyl_reverse'),  # Reverse N-methylated
            (r'C\(=O\)N[12]?', 'peptide_reverse')  # Reverse peptide bond
        ]
        self.complex_residue_patterns = [
            (r'\[C[@]H\]\(CCCNC\(=O\)CCC\[C@@H\]\(NC\(=O\)CCCCCCCCCCCCCCCC\)C\(=O\)OC\(C\)\(C\)C\)', 'Kpg'),
            (r'CCCCCCCCCCCCCCCCC\(=O\)N\[C@H\]\(CCCC\(=O\)NCCC\[C@@H\]', 'Kpg'),
            (r'\[C@*H\]\(CSC\(c\d+ccccc\d+\)\(c\d+ccccc\d+\)c\d+ccc\(OC\)cc\d+\)', 'Cmt'),
            (r'CSC\(c.*?c.*?OC\)', 'Cmt'),
            (r'COc.*?ccc\(C\(SC', 'Cmt'),
            (r'c2ccccc2\)c2ccccc2\)cc', 'Cmt'),
            # Glu(OAll)
            (r'C=CCOC\(=O\)CC\[C@@H\]', 'Eal'),
            (r'\(C\)OP\(=O\)\(O\)OCc\d+ccccc\d+', 'Tpb'),
            #(r'COc\d+ccc\(C\(SC\[C@@H\]\d+.*?\)\(c\d+ccccc\d+\)c\d+ccccc\d+\)cc\d+', 'Cmt-cyclic'),

            # Dtg - Asp(OtBu)-(Dmb)Gly
            (r'CN\(Cc\d+ccc\(OC\)cc\d+OC\)C\(=O\)\[C@H\]\(CC\(=O\)OC\(C\)\(C\)C\)', 'Dtg'),
            (r'C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
            (r'N\[C@@H\]\(CC\(=O\)OC\(C\)\(C\)C\)C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
        ]
        # Three to one letter code mapping
        self.three_to_one = {
            'Ala': 'A', 'Cys': 'C', 'Asp': 'D', 'Glu': 'E',
            'Phe': 'F', 'Gly': 'G', 'His': 'H', 'Ile': 'I',
            'Lys': 'K', 'Leu': 'L', 'Met': 'M', 'Asn': 'N',
            'Pro': 'P', 'Gln': 'Q', 'Arg': 'R', 'Ser': 'S',
            'Thr': 'T', 'Val': 'V', 'Trp': 'W', 'Tyr': 'Y',
            'ala': 'a', 'cys': 'c', 'asp': 'd', 'glu': 'e',
            'phe': 'f', 'gly': 'g', 'his': 'h', 'ile': 'i',
            'lys': 'k', 'leu': 'l', 'met': 'm', 'asn': 'n',
            'pro': 'p', 'gln': 'q', 'arg': 'r', 'ser': 's',
            'thr': 't', 'val': 'v', 'trp': 'w', 'tyr': 'y', 'Cmt-cyclic': 'Ĉ',
            'Aib': 'Ŷ', 'Dtg': 'Ĝ', 'Cmt': 'Ĉ', 'Eal': 'Ė', 'Nml': "Ŀ", 'Nma': 'Ṃ',
            'Kpg': 'Ƙ', 'Tpb': 'Ṯ', 'Cyl': 'Ċ', 'Nle': 'Ł', 'Hph': 'Ĥ', 'Cys-Cys': 'CC', 'cys-cys': 'cc',
        }
        
        self._build_swisssidechain_lookups()
        
    def _build_swisssidechain_lookups(self):
        """Side chain lookups for SwissSidechain UAAs"""
        # Exact SMILES match
        self.exact_smiles_lookup = {}
        
        # Clean SMILES lookup (without stereochemistry) 
        self.clean_smiles_lookup = {}
        
        for uaa_name, uaa_data in all_aminos.items():
            code = uaa_data["Code"]
            letter = uaa_data["Letter"]
            smiles = uaa_data["SMILES"]
            
            self.three_to_one[code] = letter
            
            self.exact_smiles_lookup[smiles] = code
            
            # Clean SMILES (no stereochemistry)
            clean_smiles = self._remove_stereochemistry(smiles)
            if clean_smiles not in self.clean_smiles_lookup:
                self.clean_smiles_lookup[clean_smiles] = []
            self.clean_smiles_lookup[clean_smiles].append(code)
    
    def _remove_stereochemistry(self, smiles):
        """Remove stereochemistry from SMILES"""
        cleaned = smiles
        stereochemistry_patterns = [
            '[C@@H]', '[C@H]', '[C@@]', '[C@]',
            '[S@@]', '[S@]', '[N@@]', '[N@]',
            '@@', '@'
        ]
        for pattern in stereochemistry_patterns:
            cleaned = cleaned.replace(pattern, pattern.replace('@@', '').replace('@', '').replace('[', '').replace(']', ''))
        return cleaned 
            
    def preprocess_complex_residues(self, smiles):
        """Identify and protect complex residues with internal peptide bonds - improved to prevent overlaps"""
        complex_positions = []
        
        for pattern, residue_type in self.complex_residue_patterns:
            for match in re.finditer(pattern, smiles):
                if not any(pos['start'] <= match.start() < pos['end'] or 
                          pos['start'] < match.end() <= pos['end'] for pos in complex_positions):
                    complex_positions.append({
                        'start': match.start(),
                        'end': match.end(),
                        'type': residue_type,
                        'pattern': match.group()
                    })
        
        complex_positions.sort(key=lambda x: x['start'])
        
        if not complex_positions:
            return smiles, []
        
        preprocessed_smiles = smiles
        offset = 0 
        
        protected_residues = []
        
        for pos in complex_positions:
            start = pos['start'] + offset
            end = pos['end'] + offset
            
            complex_part = preprocessed_smiles[start:end]
            
            if not ('[C@H]' in complex_part or '[C@@H]' in complex_part):
                continue 
                
            placeholder = f"COMPLEX_RESIDUE_{len(protected_residues)}"
            
            preprocessed_smiles = preprocessed_smiles[:start] + placeholder + preprocessed_smiles[end:]
            
            offset += len(placeholder) - (end - start)
            
            protected_residues.append({
                'placeholder': placeholder,
                'type': pos['type'],
                'content': complex_part
            })
                
        return preprocessed_smiles, protected_residues
    def split_on_bonds(self, smiles, protected_residues=None):
        """Split SMILES into segments based on peptide bonds, with improved handling of protected residues"""
        positions = []
        used = set()
        
        # Handle protected complex residues if any
        if protected_residues:
            for residue in protected_residues:
                match = re.search(residue['placeholder'], smiles)
                if match:
                    positions.append({
                        'start': match.start(),
                        'end': match.end(),
                        'type': 'complex',
                        'pattern': residue['placeholder'],
                        'residue_type': residue['type'],
                        'content': residue['content']
                    })
                    used.update(range(match.start(), match.end()))
        
        # Find all peptide bonds
        bond_positions = []
        
        # Find Gly pattern first
        gly_pattern = r'NCC\(=O\)'
        for match in re.finditer(gly_pattern, smiles):
            if not any(p in range(match.start(), match.end()) for p in used):
                bond_positions.append({
                    'start': match.start(),
                    'end': match.end(),
                    'type': 'gly',
                    'pattern': match.group()
                })
                used.update(range(match.start(), match.end()))
        
        for pattern, bond_type in self.bond_patterns:
            for match in re.finditer(pattern, smiles):
                if not any(p in range(match.start(), match.end()) for p in used):
                    bond_positions.append({
                        'start': match.start(),
                        'end': match.end(),
                        'type': bond_type,
                        'pattern': match.group()
                    })
                    used.update(range(match.start(), match.end()))
        
        bond_positions.sort(key=lambda x: x['start'])
        
        all_positions = positions + bond_positions
        all_positions.sort(key=lambda x: x['start'])
        
        segments = []
        
        if all_positions and all_positions[0]['start'] > 0:
            segments.append({
                'content': smiles[0:all_positions[0]['start']],
                'bond_after': all_positions[0]['pattern'] if all_positions[0]['type'] != 'complex' else None,
                'complex_after': all_positions[0]['pattern'] if all_positions[0]['type'] == 'complex' else None
            })
        
        for i in range(len(all_positions)-1):
            current = all_positions[i]
            next_pos = all_positions[i+1]
            
            if current['type'] == 'complex':
                segments.append({
                    'content': current['content'],
                    'bond_before': all_positions[i-1]['pattern'] if i > 0 and all_positions[i-1]['type'] != 'complex' else None,
                    'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None,
                    'complex_type': current['residue_type']
                })
            elif current['type'] == 'gly':
                segments.append({
                    'content': 'NCC(=O)',
                    'bond_before': all_positions[i-1]['pattern'] if i > 0 and all_positions[i-1]['type'] != 'complex' else None,
                    'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None
                })
            else:
                content = smiles[current['end']:next_pos['start']]
                if content and next_pos['type'] != 'complex':
                    segments.append({
                        'content': content,
                        'bond_before': current['pattern'],
                        'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None
                    })
        
        # Last segment
        if all_positions and all_positions[-1]['end'] < len(smiles):
            if all_positions[-1]['type'] == 'complex':
                segments.append({
                    'content': all_positions[-1]['content'],
                    'bond_before': all_positions[-2]['pattern'] if len(all_positions) > 1 and all_positions[-2]['type'] != 'complex' else None,
                    'complex_type': all_positions[-1]['residue_type']
                })
            else:
                segments.append({
                    'content': smiles[all_positions[-1]['end']:],
                    'bond_before': all_positions[-1]['pattern']
                })
        
        return segments
    def is_peptide(self, smiles):
        """Check if the SMILES represents a peptide structure"""
        mol = Chem.MolFromSmiles(smiles)
        if mol is None:
            return False
            
        # Look for peptide bonds: NC(=O) pattern
        peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)')
        if mol.HasSubstructMatch(peptide_bond_pattern):
            return True
            
        # Look for N-methylated peptide bonds: N(C)C(=O) pattern
        n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)')
        if mol.HasSubstructMatch(n_methyl_pattern):
            return True
        
        return False

    def is_cyclic(self, smiles):
        # Check for C-terminal carboxyl
        if smiles.endswith('C(=O)O'):
            return False, [], []
            
        # Find all numbers used in ring closures
        ring_numbers = re.findall(r'(?:^|[^c])[0-9](?=[A-Z@\(\)])', smiles)
        
        # Aromatic ring numbers
        aromatic_matches = re.findall(r'c[0-9](?:ccccc|c\[nH\]c)[0-9]', smiles)
        aromatic_cycles = []
        for match in aromatic_matches:
            numbers = re.findall(r'[0-9]', match)
            aromatic_cycles.extend(numbers)
        
        peptide_cycles = [n for n in ring_numbers if n not in aromatic_cycles]
        
        is_cyclic = len(peptide_cycles) > 0 and not smiles.endswith('C(=O)O')
        return is_cyclic, peptide_cycles, aromatic_cycles
    

    def clean_terminal_carboxyl(self, segment):
        """Remove C-terminal carboxyl only if it's the true terminus"""
        content = segment['content']
        
        # Only clean if:
        # 1. Contains C(=O)O
        # 2. No bond_after exists (meaning it's the last segment)
        if 'C(=O)O' in content and not segment.get('bond_after'):
            # Remove C(=O)O pattern regardless of position
            cleaned = re.sub(r'\(C\(=O\)O\)', '', content)
            # Remove any leftover empty parentheses
            cleaned = re.sub(r'\(\)', '', cleaned)
            return cleaned
        return content

    def identify_residue(self, segment):
        if 'complex_type' in segment:
            return segment['complex_type'], []
        
        content = self.clean_terminal_carboxyl(segment)
        mods = self.get_modifications(segment)
        
        if content.startswith('COc1ccc(C(SC[C@@H]'):
            print("DIRECT MATCH: Found Cmt at beginning")
            return 'Cmt', mods

        if '[C@@H]3CCCN3C2=O)(c2ccccc2)c2ccccc2)cc' in content:
            print("DIRECT MATCH: Found Pro at end")
            return 'Pro', mods

        # Eal - Glu(OAll)
        if 'CCC(=O)OCC=C' in content or 'CC(=O)OCC=C' in content or 'C=CCOC(=O)CC' in content:
            return 'Eal', mods

        # Proline (P)
        if any([
            (segment.get('bond_after', '').startswith(f'N{n}C(=O)') and 'CCC' in content and 
            any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
            for n in '123456789'
        ]) or any([(segment.get('bond_before', '').startswith(f'C(=O)N{n}') and 'CCC' in content and 
                any(f'CCC{n}' for n in '123456789'))
                for n in '123456789'
        ]) or any([
            (f'CCCN{n}' in content and content.endswith('=O') and 
            any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
            for n in '123456789'
        ]) or any([
            # CCC[C@H]n
            (content == f'CCC[C@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
            (content == f'CCC[C@@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
            # N-terminal Pro with any ring number
            (f'N{n}CCC[C@H]{n}' in content) or
            (f'N{n}CCC[C@@H]{n}' in content)
            for n in '123456789'
        ]):
            return 'Pro', mods

        # D-Proline (p)
        if ('N1[C@H](CCC1)' in content):
            return 'pro', mods

        # Tryptophan (W)
        if re.search(r'c[0-9]c\[nH\]c[0-9]ccccc[0-9][0-9]', content) and \
        'c[nH]c' in content.replace(' ', ''):
            if '[C@H](CC' in content:  # D-form
                return 'trp', mods
            return 'Trp', mods
        
        # Lysine (K)
        if '[C@@H](CCCCN)' in content or '[C@H](CCCCN)' in content:
            if '[C@H](CCCCN)' in content:  # D-form
                return 'lys', mods
            return 'Lys', mods
                
        # Arginine (R)
        if '[C@@H](CCCNC(=N)N)' in content or '[C@H](CCCNC(=N)N)' in content:
            if '[C@H](CCCNC(=N)N)' in content:  # D-form
                return 'arg', mods
            return 'Arg', mods
        
        if content == 'C' and segment.get('bond_before') and segment.get('bond_after'):
            if ('C(=O)N' in segment['bond_before'] or 'NC(=O)' in segment['bond_before'] or 'N(C)C(=O)' in segment['bond_before']) and \
               ('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']):
                return 'Gly', mods
            
        if 'CNC' in content and any(f'C{i}=' in content for i in range(1, 10)):
            return 'Gly', mods  #'CNC1=O'
        if not segment.get('bond_before') and segment.get('bond_after'):
            if content == 'C' or content == 'NC':
                if ('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']):
                    return 'Gly', mods
                
        # Leucine patterns (L/l)
        if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content or '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content or (('N[C@H](CCC(C)C)' in content or 'N[C@@H](CCC(C)C)' in content) and segment.get('bond_before') is None):
            if '[C@H](CC(C)C)' in content or 'CC(C)C[C@H]' in content:  # D-form
                return 'leu', mods
            return 'Leu', mods

        # Threonine patterns (T/t)
        if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content or '[C@@H]([C@H](C)O)' in content or '[C@H]([C@@H](C)O)' in content:
            if '[C@H]([C@@H](C)O)' in content:  # D-form
                return 'thr', mods
            return 'Thr', mods
        
        if re.search(r'\[C@H\]\(CCc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(CCc\d+ccccc\d+\)', content):
            return 'Hph', mods    
        
        # Phenylalanine patterns (F/f)
        if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(Cc\d+ccccc\d+\)', content):
            if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content):  # D-form
                return 'phe', mods
            return 'Phe', mods

        if ('CC(C)[C@@H]' in content or 'CC(C)[C@H]' in content or 
            '[C@H](C(C)C)' in content or '[C@@H](C(C)C)' in content or
            'C(C)C[C@H]' in content or 'C(C)C[C@@H]' in content):
            if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]', 'CCC(=O)']):
                if '[C@H]' in content and not '[C@@H]' in content:  # D-form
                    return 'val', mods
                return 'Val', mods
                    
        # Isoleucine patterns (I/i)
        if (any(['CC[C@@H](C)' in content, '[C@@H](C)CC' in content, '[C@@H](CC)C' in content, 
                'C(C)C[C@@H]' in content, '[C@@H]([C@H](C)CC)' in content, '[C@H]([C@@H](C)CC)' in content,
                '[C@@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content,
                'C[C@H](CC)[C@@H]' in content, 'C[C@@H](CC)[C@H]' in content, 
                'C[C@H](CC)[C@H]' in content, 'C[C@@H](CC)[C@@H]' in content,
                'CC[C@H](C)[C@@H]' in content, 'CC[C@@H](C)[C@H]' in content,
                'CC[C@H](C)[C@H]' in content, 'CC[C@@H](C)[C@@H]' in content]) 
            and 'CC(C)C' not in content):  # Exclude valine pattern
            if any(['[C@H]([C@@H](CC)C)' in content, '[C@H](CC)C' in content,
                    '[C@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content,
                    'C[C@@H](CC)[C@H]' in content, 'C[C@H](CC)[C@H]' in content,
                    'CC[C@@H](C)[C@H]' in content, 'CC[C@H](C)[C@H]' in content]):
                # D-form
                return 'ile', mods
            return 'Ile', mods
        
        # Tpb - Thr(PO(OBzl)OH)
        if re.search(r'\(C\)OP\(=O\)\(O\)OCc[0-9]ccccc[0-9]', content) or 'OP(=O)(O)OCC' in content:
            return 'Tpb', mods
        
        # Alanine patterns (A/a)
        if ('[C@H](C)' in content or '[C@@H](C)' in content):
            if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O', 'CC[C@H]', 'CC[C@@H]']):
                if '[C@H](C)' in content:  # D-form
                    return 'ala', mods
                return 'Ala', mods
        
        # Tyrosine patterns (Y/y)
        if re.search(r'Cc[0-9]ccc\(O\)cc[0-9]', content):
            if '[C@H](Cc1ccc(O)cc1)' in content:  # D-form
                return 'tyr', mods
            return 'Tyr', mods

        # Serine patterns (S/s)
        if '[C@H](CO)' in content or '[C@@H](CO)' in content:
            if not ('C(C)O' in content or 'COC' in content):
                if '[C@H](CO)' in content:  # D-form
                    return 'ser', mods
                return 'Ser', mods
            
        if 'CSSC' in content:
            # cysteine-cysteine bridge
            if re.search(r'\[C@@H\].*CSSC.*\[C@@H\]', content) or re.search(r'\[C@H\].*CSSC.*\[C@H\]', content):
                if '[C@H]' in content and not '[C@@H]' in content:  # D-form
                    return 'cys-cys', mods
                return 'Cys-Cys', mods
                
            # N-terminal amine group
            if '[C@@H](N)CSSC' in content or '[C@H](N)CSSC' in content:
                if '[C@H](N)CSSC' in content:  # D-form
                    return 'cys-cys', mods
                return 'Cys-Cys', mods
                
            # C-terminal carboxyl
            if 'CSSC[C@@H](C(=O)O)' in content or 'CSSC[C@H](C(=O)O)' in content:
                if 'CSSC[C@H](C(=O)O)' in content:  # D-form
                    return 'cys-cys', mods
                return 'Cys-Cys', mods
            
        # Cysteine patterns (C/c)
        if '[C@H](CS)' in content or '[C@@H](CS)' in content:
            if '[C@H](CS)' in content:  # D-form
                return 'cys', mods
            return 'Cys', mods
        
        # Methionine patterns (M/m)
        if ('CCSC' in content) or ("CSCC" in content):
            if '[C@H](CCSC)' in content:  # D-form
                return 'met', mods
            elif '[C@H]' in content:
                return 'met', mods
            return 'Met', mods
                    
        # Glutamine patterns (Q/q)
        if (content == '[C@@H](CC' or content == '[C@H](CC' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CCC(=O)N' in content) or ('CCC(N)=O' in content):
            if '[C@H](CCC(=O)N)' in content:  # D-form
                return 'gln', mods
            return 'Gln', mods
            
        # Asparagine patterns (N/n)
        if (content == '[C@@H](C' or content == '[C@H](C' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CC(=O)N' in content) or ('CCN(=O)' in content) or ('CC(N)=O' in content):
            if '[C@H](CC(=O)N)' in content:  # D-form
                return 'asn', mods
            return 'Asn', mods

        # Glutamic acid patterns (E/e)
        if ('CCC(=O)O' in content):
            if '[C@H](CCC(=O)O)' in content:  # D-form
                return 'glu', mods
            return 'Glu', mods
            
        # Aspartic acid patterns (D/d)
        if ('CC(=O)O' in content):
            if '[C@H](CC(=O)O)' in content:  # D-form
                return 'asp', mods
            return 'Asp', mods
        
        if re.search(r'Cc\d+c\[nH\]cn\d+', content) or re.search(r'Cc\d+cnc\[nH\]\d+', content):
            if '[C@H]' in content:  # D-form
                return 'his', mods
            return 'His', mods
        if 'C2(CCCC2)' in content or 'C1(CCCC1)' in content or re.search(r'C\d+\(CCCC\d+\)', content):
            return 'Cyl', mods
        
        if ('N[C@@H](CCCC)' in content or '[C@@H](CCCC)' in content or 'CCCC[C@@H]' in content or 
            'N[C@H](CCCC)' in content or '[C@H](CCCC)' in content) and 'CC(C)' not in content:
            return 'Nle', mods

        if 'C(C)(C)(N)' in content:
            return 'Aib', mods
        
        if 'C(C)(C)' in content and 'OC(C)(C)C' not in content:
            if (segment.get('bond_before') and segment.get('bond_after') and
                any(bond in segment['bond_before'] for bond in ['C(=O)N', 'NC(=O)', 'N(C)C(=O)']) and
                any(bond in segment['bond_after'] for bond in ['NC(=O)', 'C(=O)N', 'N(C)C(=O)'])):
                return 'Aib', mods
        
        # Dtg - Asp(OtBu)-(Dmb)Gly
        if 'CC(=O)OC(C)(C)C' in content and 'CC1=C(C=C(C=C1)OC)OC' in content:
            return 'Dtg', mods
    
        
        # Kpg - Lys(palmitoyl-Glu-OtBu)
        if 'CCCNC(=O)' in content and 'CCCCCCCCCCCC' in content:
            return 'Kpg', mods
        
        #======================Other UAAs from the SwissSidechain==========================================
        # ADD SWISSSIDECHAIN MATCHING AT THE VERY END - only if nothing else matched
        if content in self.exact_smiles_lookup:
            return self.exact_smiles_lookup[content], mods
            
        # Look up without stereochemistry differences)
        content_clean = self._remove_stereochemistry(content)
        if content_clean in self.clean_smiles_lookup:
            matches = self.clean_smiles_lookup[content_clean]
            if len(matches) == 1:
                return matches[0], mods
            else:
                # Prefer L-forms (non-D prefixed codes) over D-forms
                l_forms = [m for m in matches if not m.startswith('D')]
                if l_forms:
                    return l_forms[0], mods
                return matches[0], mods
            
        return None, mods

    def get_modifications(self, segment):
        """Get modifications based on bond types and segment content - fixed to avoid duplicates"""
        mods = []
        
        # Check for N-methylation in any form, but only add it once
        # Check both bonds and segment content for N-methylation patterns
        if ((segment.get('bond_after') and 
            ('N(C)' in segment['bond_after'] or segment['bond_after'].startswith('C(=O)N(C)'))) or
            ('N(C)C(=O)' in segment['content'] or 'N(C)C1=O' in segment['content']) or
            (segment['content'].endswith('N(C)C(=O)') or segment['content'].endswith('N(C)C1=O'))):
            mods.append('N-Me')
        
        # Check for O-linked modifications
        #if segment.get('bond_after') and 'OC(=O)' in segment['bond_after']:
            #mods.append('O-linked')
        
        return mods
    
    def analyze_structure(self, smiles, verbose=False):
        logs = []
        preprocessed_smiles, protected_residues = self.preprocess_complex_residues(smiles)

        is_cyclic, peptide_cycles, aromatic_cycles = self.is_cyclic(smiles)
        
        segments = self.split_on_bonds(preprocessed_smiles, protected_residues)
        
        sequence = []
        for i, segment in enumerate(segments):
            if verbose:
                logs.append(f"\nSegment {i}:")
                logs.append(f" Content: {segment.get('content','None')}")
                logs.append(f" Bond before: {segment.get('bond_before','None')}")
                logs.append(f" Bond after: {segment.get('bond_after','None')}")
            
            residue, mods = self.identify_residue(segment)
            if residue:
                if mods:
                    sequence.append(f"{residue}({','.join(mods)})")
                else:
                    sequence.append(residue)
            else:
                logs.append(f"Warning: Could not identify residue in segment: {segment.get('content', 'None')}")
        
        three_letter = '-'.join(sequence)
        
        one_letter = ''.join(self.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence)
        
        if is_cyclic:
            three_letter = f"cyclo({three_letter})"
            one_letter = f"cyclo({one_letter})"

        return {
            'three_letter': three_letter,
            'one_letter': one_letter,
            'is_cyclic': is_cyclic,
            'residues': sequence,
            'details': "\n".join(logs)
        }
    
    def get_uaa_information(self):
        uaa_info = """
                ## Supported Non-Standard Amino Acids (UAAs) (Common)

                - **Kpg** - Lys(palmitoyl-Glu-OtBu)
                - **Cmt** - Cys(Mmt)
                - **Eal** - Glu(OAll)
                - **Tpb** - Thr(PO(OBzl)OH)
                - **Dtg** - Asp(OtBu)-(Dmb)Gly
                - **Aib** - α-Aminoisobutyric acid
                - **Nle** - Norleucine
                - **Hph** - Homophenylalanine
                - **Cyl** - Cycloleucine
                - **Nml** - N-methylleucine
                - **Nma** - N-methylalanine

                ### Special Cases:
                - **Cys-Cys** - Disulfide-bridged cysteine dimer
                ---

                ## Three-to-One Letter Code Mapping

                ### Standard Amino Acids:
                **L-amino acids:** A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y  
                **D-amino acids:** a, c, d, e, f, g, h, i, k, l, m, n, p, q, r, s, t, v, w, y

                ### UAA Single Letter Codes:
                | UAA | Code | UAA | Code | UAA | Code |
                |-----|------|-----|------|-----|------|
                | Aib | Ŷ | Dtg | Ĝ | Cmt | Ĉ |
                | Eal | Ė | Nml | Ŀ | Nma | Ṃ |
                | Kpg | Ƙ | Tpb | Ṯ | Cyl | Ċ |
                | Nle | Ł | Hph | Ĥ | | |

                ### Special Cases:
                - **Cys-Cys:** CC (L-form) or cc (D-form)

                ## For other mappings, please refer to the [SwissSideChain webside](https://www.swisssidechain.ch/browse/family/table.php?family=all)
                """
        return uaa_info

def annotate_cyclic_structure(mol, sequence):
    """Create structure visualization"""
    AllChem.Compute2DCoords(mol)
    
    drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000)
    
    drawer.drawOptions().addAtomIndices = False
    drawer.DrawMolecule(mol)
    drawer.FinishDrawing()
    
    img = Image.open(BytesIO(drawer.GetDrawingText()))
    draw = ImageDraw.Draw(img)
    try:
        small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
    except OSError:
        try:
            small_font = ImageFont.truetype("arial.ttf", 60)
        except OSError:
            print("Warning: TrueType fonts not available, using default font")
            small_font = ImageFont.load_default()
    
    seq_text = f"Sequence: {sequence}"
    bbox = draw.textbbox((1000, 100), seq_text, font=small_font)
    padding = 10
    draw.rectangle([bbox[0]-padding, bbox[1]-padding, 
                   bbox[2]+padding, bbox[3]+padding], 
                  fill='white', outline='white')
    draw.text((1000, 100), seq_text, 
             font=small_font, fill='black', anchor="mm")
    
    return img

def create_enhanced_linear_viz(sequence, smiles):
    """"Linear visualization"""
    analyzer = PeptideAnalyzer()
    
    fig = plt.figure(figsize=(15, 10))
    gs = fig.add_gridspec(2, 1, height_ratios=[1, 2])
    ax_struct = fig.add_subplot(gs[0])
    ax_detail = fig.add_subplot(gs[1])
    
    if sequence.startswith('cyclo('):
        residues = sequence[6:-1].split('-')
    else:
        residues = sequence.split('-')
    
    segments = analyzer.split_on_bonds(smiles)
    
    print(f"Number of residues: {len(residues)}")
    print(f"Number of segments: {len(segments)}")
    
    ax_struct.set_xlim(0, 10)
    ax_struct.set_ylim(0, 2)
    
    num_residues = len(residues)
    spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0
    
    y_pos = 1.5
    for i in range(num_residues):
        x_pos = 0.5 + i * spacing
        
        rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4, 
                               facecolor='lightblue', edgecolor='black')
        ax_struct.add_patch(rect)
        
        if i < num_residues - 1:
            segment = segments[i] if i < len(segments) else None
            if segment:
                bond_type = 'ester' if 'O-linked' in segment.get('bond_after', '') else 'peptide'
                is_n_methylated = 'N-Me' in segment.get('bond_after', '')
                
                bond_color = 'red' if bond_type == 'ester' else 'black'
                linestyle = '--' if bond_type == 'ester' else '-'
                
                ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos], 
                             color=bond_color, linestyle=linestyle, linewidth=2)
                
                mid_x = x_pos + spacing/2
                bond_label = f"{bond_type}"
                if is_n_methylated:
                    bond_label += "\n(N-Me)"
                ax_struct.text(mid_x, y_pos+0.1, bond_label, 
                             ha='center', va='bottom', fontsize=10, 
                             color=bond_color)
        
        ax_struct.text(x_pos, y_pos-0.5, residues[i], 
                      ha='center', va='top', fontsize=14)
    
    ax_detail.set_ylim(0, len(segments)+1)
    ax_detail.set_xlim(0, 1)
    
    segment_y = len(segments)
    for i, segment in enumerate(segments):
        y = segment_y - i
        
        # Check if this is a bond or residue
        residue, mods = analyzer.identify_residue(segment)
        if residue:
            text = f"Residue {i+1}: {residue}"
            if mods:
                text += f" ({', '.join(mods)})"
            color = 'blue'
        else:
            text = f"Bond {i}: "
            if 'O-linked' in segment.get('bond_after', ''):
                text += "ester"
            elif 'N-Me' in segment.get('bond_after', ''):
                text += "peptide (N-methylated)"
            else:
                text += "peptide"
            color = 'red'
        
        ax_detail.text(0.05, y, text, fontsize=12, color=color)
        ax_detail.text(0.5, y, f"SMILES: {segment.get('content', '')}", fontsize=10, color='gray')
    
    # If cyclic, add connection indicator
    if sequence.startswith('cyclo('):
        ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos),
                          arrowprops=dict(arrowstyle='<->', color='red', lw=2))
        ax_struct.text(5, y_pos+0.3, 'Cyclic Connection', 
                      ha='center', color='red', fontsize=14)
    
    ax_struct.set_title("Peptide Structure Overview", pad=20)
    ax_detail.set_title("Segment Analysis Breakdown", pad=20)
    
    for ax in [ax_struct, ax_detail]:
        ax.set_xticks([])
        ax.set_yticks([])
        ax.axis('off')
    
    plt.tight_layout()
    return fig

class PeptideStructureGenerator:
    """Generate 3D structures of peptides using different embedding methods"""
    
    @staticmethod
    def prepare_molecule(smiles):
        """Prepare molecule with proper hydrogen handling"""
        mol = Chem.MolFromSmiles(smiles, sanitize=False)
        if mol is None:
            raise ValueError("Failed to create molecule from SMILES")
        
        for atom in mol.GetAtoms():
            atom.UpdatePropertyCache(strict=False)
        
        # Sanitize with reduced requirements
        Chem.SanitizeMol(mol, 
                        sanitizeOps=Chem.SANITIZE_FINDRADICALS|
                                  Chem.SANITIZE_KEKULIZE|
                                  Chem.SANITIZE_SETAROMATICITY|
                                  Chem.SANITIZE_SETCONJUGATION|
                                  Chem.SANITIZE_SETHYBRIDIZATION|
                                  Chem.SANITIZE_CLEANUPCHIRALITY)
        
        mol = Chem.AddHs(mol)
        return mol

    @staticmethod
    def get_etkdg_params(attempt=0):
        """Get ETKDG parameters"""
        params = AllChem.ETKDGv3()
        params.randomSeed = -1
        params.maxIterations = 200
        params.numThreads = 4  # Reduced for web interface
        params.useBasicKnowledge = True
        params.enforceChirality = True
        params.useExpTorsionAnglePrefs = True
        params.useSmallRingTorsions = True
        params.useMacrocycleTorsions = True
        params.ETversion = 2
        params.pruneRmsThresh = -1
        params.embedRmsThresh = 0.5
        
        if attempt > 10:
            params.bondLength = 1.5 + (attempt - 10) * 0.02
            params.useExpTorsionAnglePrefs = False
        
        return params

    def generate_structure_etkdg(self, smiles, max_attempts=20):
        """Generate 3D structure using ETKDG without UFF optimization"""
        success = False
        mol = None
        
        for attempt in range(max_attempts):
            try:
                mol = self.prepare_molecule(smiles)
                params = self.get_etkdg_params(attempt)
                
                if AllChem.EmbedMolecule(mol, params) == 0:
                    success = True
                    break
            except Exception as e:
                continue
        
        if not success:
            raise ValueError("Failed to generate structure with ETKDG")
        
        return mol

    def generate_structure_uff(self, smiles, max_attempts=20):
        """Generate 3D structure using ETKDG followed by UFF optimization"""
        best_mol = None
        lowest_energy = float('inf')
        
        for attempt in range(max_attempts):
            try:
                test_mol = self.prepare_molecule(smiles)
                params = self.get_etkdg_params(attempt)
                
                if AllChem.EmbedMolecule(test_mol, params) == 0:
                    res = AllChem.UFFOptimizeMolecule(test_mol, maxIters=2000, 
                                                     vdwThresh=10.0, confId=0,
                                                     ignoreInterfragInteractions=True)
                    
                    if res == 0:
                        ff = AllChem.UFFGetMoleculeForceField(test_mol)
                        if ff:
                            current_energy = ff.CalcEnergy()
                            if current_energy < lowest_energy:
                                lowest_energy = current_energy
                                best_mol = Chem.Mol(test_mol)
            except Exception:
                continue
        
        if best_mol is None:
            raise ValueError("Failed to generate optimized structure")
        
        return best_mol

    @staticmethod
    def mol_to_sdf_bytes(mol):
        """Convert RDKit molecule to SDF file bytes"""
        sio = StringIO()
        writer = Chem.SDWriter(sio)
        writer.write(mol)
        writer.close()
        
        return sio.getvalue().encode('utf-8')

def process_input(
    smiles_input=None, 
    file_obj=None, 
    #show_linear=False, 
    show_segment_details=False, 
    generate_3d=False, 
    use_uff=False
):
    """Actual Execution Command."""
    analyzer = PeptideAnalyzer()
    temp_dir = tempfile.mkdtemp() if generate_3d else None
    structure_files = []
    
    # Retrieve UAA information
    uaa_info = analyzer.get_uaa_information()

    # Handle direct SMILES input
    if smiles_input:
        smiles = smiles_input.strip()
        
        if not analyzer.is_peptide(smiles):
            return "Error: Input SMILES does not appear to be a peptide structure.", None, None, []
                
        try:
            # Preprocess to protect complex residues
            pre_smiles, protected_residues = analyzer.preprocess_complex_residues(smiles)
            # Report protected residues in summary if any
            protected_info = None
            if protected_residues:
                protected_info = [res['type'] for res in protected_residues]
                
            mol = Chem.MolFromSmiles(smiles)
            if mol is None:
                return "Error: Invalid SMILES notation.", None, None, []
            
            if generate_3d:
                generator = PeptideStructureGenerator()
                
                try:
                    # Generate ETKDG structure
                    mol_etkdg = generator.generate_structure_etkdg(smiles)
                    etkdg_path = os.path.join(temp_dir, "structure_etkdg.sdf")
                    writer = Chem.SDWriter(etkdg_path)
                    writer.write(mol_etkdg)
                    writer.close()
                    structure_files.append(etkdg_path)
                    
                    # Generate UFF structure if requested
                    if use_uff:
                        mol_uff = generator.generate_structure_uff(smiles)
                        uff_path = os.path.join(temp_dir, "structure_uff.sdf")
                        writer = Chem.SDWriter(uff_path)
                        writer.write(mol_uff)
                        writer.close()
                        structure_files.append(uff_path)
                
                except Exception as e:
                    return f"Error generating 3D structures: {str(e)}", None, None, []
            
            analysis = analyzer.analyze_structure(smiles, verbose=show_segment_details)
            three_letter = analysis['three_letter']
            one_letter = analysis['one_letter']
            is_cyclic = analysis['is_cyclic']
            details = analysis.get('details', "")
            
            img_cyclic = annotate_cyclic_structure(mol, three_letter)
            
            summary = "Summary:\n"
            summary += f"Sequence: {three_letter}\n"
            summary += f"One-letter code: {one_letter}\n"
            summary += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
            
            # Add segment details if requested
            if show_segment_details and details:
                summary += "\n" + "="*50 + "\n"
                summary += "SEGMENT ANALYSIS:\n"
                summary += "="*50 + "\n"
                summary += details + "\n"
            
            detected_uaas = [aa for aa in analysis['residues'] if aa not in [
                'Ala', 'Cys', 'Asp', 'Glu', 'Phe', 'Gly', 'His', 'Ile', 'Lys', 'Leu', 
                'Met', 'Asn', 'Pro', 'Gln', 'Arg', 'Ser', 'Thr', 'Val', 'Trp', 'Tyr',
                'ala', 'cys', 'asp', 'glu', 'phe', 'gly', 'his', 'ile', 'lys', 'leu', 
                'met', 'asn', 'pro', 'gln', 'arg', 'ser', 'thr', 'val', 'trp', 'tyr'
            ]]
            
            if detected_uaas:
                summary += f"\nDetected UAAs: {', '.join(set(detected_uaas))}\n"
            
            if structure_files:
                summary += "\n3D Structures Generated:\n"
                for filepath in structure_files:
                    summary += f"- {os.path.basename(filepath)}\n"
            
            #return summary, img_cyclic, img_linear, structure_files if structure_files else None
            return summary, img_cyclic, uaa_info

        except Exception as e:
            #return f"Error processing SMILES: {str(e)}", None, None, []
            return f"Error processing SMILES: {str(e)}", None, uaa_info
    # Handle file input
    if file_obj is not None:
        try:
            if hasattr(file_obj, 'name'):
                with open(file_obj.name, 'r') as f:
                    content = f.read()
            else:
                content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj)
            
            output_text = ""
            for line in content.splitlines():
                smiles = line.strip()
                if not smiles:
                    continue
                
                if not analyzer.is_peptide(smiles):
                    output_text += f"Skipping non-peptide SMILES: {smiles}\n"
                    continue
                
                try:
                    result = analyzer.analyze_structure(smiles)
                    
                    output_text += f"\nSummary for SMILES: {smiles}\n"
                    output_text += f"Sequence: {result['three_letter']}\n"
                    output_text += f"One-letter code: {result['one_letter']}\n"
                    output_text += f"Is Cyclic: {'Yes' if result['is_cyclic'] else 'No'}\n"
                    output_text += "-" * 50 + "\n"
                except Exception as e:
                    output_text += f"Error processing SMILES: {smiles} - {str(e)}\n"
                    output_text += "-" * 50 + "\n"
            
            return output_text, None, uaa_info 
            
        except Exception as e:
            #return f"Error processing file: {str(e)}", None, None, []
            return f"Error processing file: {str(e)}", None, uaa_info
    
    return (
            output_text or "No analysis done.",
            img_cyclic if 'img_cyclic' in locals() else None, uaa_info
            #img_linear if 'img_linear' in locals() else None,
            #structure_files if structure_files else []
        )

iface = gr.Interface(
    fn=process_input,
    inputs=[
        gr.Textbox(
            label="Enter SMILES string",
            placeholder="Enter SMILES notation of peptide...",
            lines=2
        ),
        gr.File(
            label="Or upload a text file with SMILES",
            file_types=[".txt"]
        ),
        gr.Checkbox(
            label="Show show segmentation details",
            value=False
        ),],
    outputs=[
        gr.Textbox(
            label="Analysis Results",
            lines=10
        ),
        gr.Image(
            label="2D Structure with Annotations",
            type="pil"
        ),
        #gr.File(
            #label="3D Structure Files",
            #file_count="multiple"
        #),
        gr.Markdown(
            label="Side Notes for Non-Standard Amino Acids",
        )
    ],
    title="Peptide Structure Analyzer and Visualizer",
    description='''
    Analyze and visualize peptide structures from SMILES notation:
    1. Validates if the input is a peptide structure
    2. Determines if the peptide is cyclic
    3. Parses the amino acid sequence
    4. Creates 2D structure visualization with residue annotations
    
    Input: Either enter a SMILES string directly or upload a text file containing SMILES strings
    
    Example SMILES strings (copy and paste):
    ```
    CC(C)C[C@@H]1NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@@H](C)N(C)C(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H]2CCCN2C1=O
    ```
    ```
    C(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O
    ```
    ```
    CC(C)C[C@H]1C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)NCC(=O)N[C@H](C(=O)N2CCCCC2)CC(=O)N(C)CC(=O)N[C@@H]([C@@H](C)O)C(=O)N(C)[C@@H](C)C(=O)N[C@@H](COC(C)(C)C)C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)N1C
    ```
    ''',
    flagging_mode="never"
)

if __name__ == "__main__":
    iface.launch(share=True)

"""
5. Optional linear representation
6. Optional 3D structure generation (ETKDG and UFF methods)
gr.Checkbox(
    label="Generate 3D structure (sdf file format)",
    value=False
),
gr.Checkbox(
    label="Use UFF optimization (may take long)",
    value=False
)
],
"""