File size: 14,146 Bytes
c8018e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import gradio as gr
import torch
from transformers import MBartForConditionalGeneration, MBartTokenizer, pipeline
from langdetect import detect

device = "cuda" if torch.cuda.is_available() else "cpu"

# Load MBart model and tokenizer
model_name = "facebook/mbart-large-50-many-to-many-mmt"
tokenizer = MBartTokenizer.from_pretrained(model_name)
model = MBartForConditionalGeneration.from_pretrained(model_name).to(device)

# Load NLLB models
nllb_distilled_pipe = pipeline("translation", model="facebook/nllb-200-distilled-600M", device=0 if device == "cuda" else -1)
narsil_nllb_pipe = pipeline("translation", model="Narsil/nllb", device=0 if device == "cuda" else -1)

# Create dictionaries mapping language names to language codes for each model
# MBart languages
MBART_LANGUAGE_OPTIONS = {
    "Arabic": "ar_AR", "Czech": "cs_CZ", "German": "de_DE", "English": "en_XX", 
    "Spanish": "es_XX", "Estonian": "et_EE", "Finnish": "fi_FI", "French": "fr_XX", 
    "Gujarati": "gu_IN", "Hindi": "hi_IN", "Italian": "it_IT", "Japanese": "ja_XX", 
    "Kazakh": "kk_KZ", "Korean": "ko_KR", "Lithuanian": "lt_LT", "Latvian": "lv_LV", 
    "Burmese": "my_MM", "Nepali": "ne_NP", "Dutch": "nl_XX", "Romanian": "ro_RO", 
    "Russian": "ru_RU", "Sinhala": "si_LK", "Turkish": "tr_TR", "Vietnamese": "vi_VN", 
    "Chinese": "zh_CN", "Afrikaans": "af_ZA", "Azerbaijani": "az_AZ", "Bengali": "bn_IN", 
    "Persian": "fa_IR", "Hebrew": "he_IL", "Croatian": "hr_HR", "Indonesian": "id_ID", 
    "Georgian": "ka_GE", "Khmer": "km_KH", "Macedonian": "mk_MK", "Malayalam": "ml_IN", 
    "Mongolian": "mn_MN", "Marathi": "mr_IN", "Polish": "pl_PL", "Pashto": "ps_AF", 
    "Portuguese": "pt_XX", "Swedish": "sv_SE", "Swahili": "sw_KE", "Tamil": "ta_IN", 
    "Telugu": "te_IN", "Thai": "th_TH", "Tagalog": "tl_XX", "Ukrainian": "uk_UA", 
    "Urdu": "ur_PK", "Xhosa": "xh_ZA", "Galician": "gl_ES", "Slovene": "sl_SI"
}

# NLLB Distilled language codes
NLLB_DISTILLED_LANGUAGE_OPTIONS = {
    "Arabic": "ara_Arab", "Bulgarian": "bul_Cyrl", "Czech": "ces_Latn", "Danish": "dan_Latn",
    "German": "deu_Latn", "Greek": "ell_Grek", "English": "eng_Latn", "Finnish": "fin_Latn",
    "French": "fra_Latn", "Hindi": "hin_Deva", "Hungarian": "hun_Latn", "Italian": "ita_Latn",
    "Japanese": "jpn_Jpan", "Korean": "kor_Hang", "Dutch": "nld_Latn", "Polish": "pol_Latn",
    "Portuguese": "por_Latn", "Russian": "rus_Cyrl", "Spanish": "spa_Latn", "Swedish": "swe_Latn", 
    "Thai": "tha_Thai", "Turkish": "tur_Latn", "Ukrainian": "ukr_Cyrl", "Vietnamese": "vie_Latn",
    "Chinese": "zho_Hans"
}

# Narsil/nllb language codes
NARSIL_NLLB_LANGUAGE_OPTIONS = {
    "Amharic": "amh_Ethi", "Arabic": "ara_Arab", "Bengali": "ben_Beng", "Bulgarian": "bul_Cyrl",
    "Catalan": "cat_Latn", "Czech": "ces_Latn", "Danish": "dan_Latn", "German": "deu_Latn",
    "Greek": "ell_Grek", "English": "eng_Latn", "Finnish": "fin_Latn", "French": "fra_Latn",
    "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Hungarian": "hun_Latn", "Italian": "ita_Latn",
    "Japanese": "jpn_Jpan", "Korean": "kor_Hang", "Marathi": "mar_Deva", "Dutch": "nld_Latn",
    "Norwegian": "nob_Latn", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Romanian": "ron_Latn",
    "Russian": "rus_Cyrl", "Spanish": "spa_Latn", "Swedish": "swe_Latn", "Tamil": "tam_Taml",
    "Telugu": "tel_Telu", "Thai": "tha_Thai", "Turkish": "tur_Latn", "Ukrainian": "ukr_Cyrl",
    "Urdu": "urd_Arab", "Vietnamese": "vie_Latn", "Chinese": "zho_Hans"
}

# Map from langdetect codes to model-specific codes
LANGDETECT_TO_MBART = {
    'ar': 'ar_AR', 'cs': 'cs_CZ', 'de': 'de_DE', 'en': 'en_XX', 
    'es': 'es_XX', 'et': 'et_EE', 'fi': 'fi_FI', 'fr': 'fr_XX', 
    'gu': 'gu_IN', 'hi': 'hi_IN', 'it': 'it_IT', 'ja': 'ja_XX', 
    'kk': 'kk_KZ', 'ko': 'ko_KR', 'lt': 'lt_LT', 'lv': 'lv_LV', 
    'my': 'my_MM', 'ne': 'ne_NP', 'nl': 'nl_XX', 'ro': 'ro_RO', 
    'ru': 'ru_RU', 'si': 'si_LK', 'tr': 'tr_TR', 'vi': 'vi_VN', 
    'zh-cn': 'zh_CN', 'zh': 'zh_CN', 'af': 'af_ZA', 'az': 'az_AZ', 
    'bn': 'bn_IN', 'fa': 'fa_IR', 'he': 'he_IL', 'hr': 'hr_HR', 
    'id': 'id_ID', 'ka': 'ka_GE', 'km': 'km_KH', 'mk': 'mk_MK', 
    'ml': 'ml_IN', 'mn': 'mn_MN', 'mr': 'mr_IN', 'pl': 'pl_PL', 
    'ps': 'ps_AF', 'pt': 'pt_XX', 'sv': 'sv_SE', 'sw': 'sw_KE', 
    'ta': 'ta_IN', 'te': 'te_IN', 'th': 'th_TH', 'tl': 'tl_XX', 
    'uk': 'uk_UA', 'ur': 'ur_PK', 'xh': 'xh_ZA', 'gl': 'gl_ES', 
    'sl': 'sl_SI'
}

# Create mappings from langdetect codes to NLLB codes
LANGDETECT_TO_NLLB_DISTILLED = {
    'ar': 'ara_Arab', 'bg': 'bul_Cyrl', 'cs': 'ces_Latn', 'da': 'dan_Latn',
    'de': 'deu_Latn', 'el': 'ell_Grek', 'en': 'eng_Latn', 'fi': 'fin_Latn',
    'fr': 'fra_Latn', 'hi': 'hin_Deva', 'hu': 'hun_Latn', 'it': 'ita_Latn',
    'ja': 'jpn_Jpan', 'ko': 'kor_Hang', 'nl': 'nld_Latn', 'pl': 'pol_Latn',
    'pt': 'por_Latn', 'ru': 'rus_Cyrl', 'es': 'spa_Latn', 'sv': 'swe_Latn',
    'th': 'tha_Thai', 'tr': 'tur_Latn', 'uk': 'ukr_Cyrl', 'vi': 'vie_Latn',
    'zh': 'zho_Hans', 'zh-cn': 'zho_Hans'
}

LANGDETECT_TO_NARSIL_NLLB = {
    'am': 'amh_Ethi', 'ar': 'ara_Arab', 'bn': 'ben_Beng', 'bg': 'bul_Cyrl',
    'ca': 'cat_Latn', 'cs': 'ces_Latn', 'da': 'dan_Latn', 'de': 'deu_Latn',
    'el': 'ell_Grek', 'en': 'eng_Latn', 'fi': 'fin_Latn', 'fr': 'fra_Latn',
    'he': 'heb_Hebr', 'hi': 'hin_Deva', 'hu': 'hun_Latn', 'it': 'ita_Latn',
    'ja': 'jpn_Jpan', 'ko': 'kor_Hang', 'mr': 'mar_Deva', 'nl': 'nld_Latn',
    'no': 'nob_Latn', 'pl': 'pol_Latn', 'pt': 'por_Latn', 'ro': 'ron_Latn',
    'ru': 'rus_Cyrl', 'es': 'spa_Latn', 'sv': 'swe_Latn', 'ta': 'tam_Taml',
    'te': 'tel_Telu', 'th': 'tha_Thai', 'tr': 'tur_Latn', 'uk': 'ukr_Cyrl',
    'ur': 'urd_Arab', 'vi': 'vie_Latn', 'zh': 'zho_Hans', 'zh-cn': 'zho_Hans'
}

def translate_mbart(text, source_lang, target_lang):
    if not text:
        return "Please enter text to translate."
    
    # If source language is not specified, detect it
    if source_lang == "Auto-detect":
        try:
            detected_lang = detect(text)
            if detected_lang in LANGDETECT_TO_MBART:
                src_lang_code = LANGDETECT_TO_MBART[detected_lang]
                source_lang_display = f"Auto-detected: {[k for k, v in MBART_LANGUAGE_OPTIONS.items() if v == src_lang_code][0]}"
            else:
                return f"Detected language '{detected_lang}' is not supported by MBart."
        except:
            return "Could not detect language. Please select a source language manually."
    else:
        if source_lang not in MBART_LANGUAGE_OPTIONS:
            return f"Language '{source_lang}' is not supported by MBart."
        src_lang_code = MBART_LANGUAGE_OPTIONS[source_lang]
        source_lang_display = source_lang
    
    if target_lang not in MBART_LANGUAGE_OPTIONS:
        return f"Target language '{target_lang}' is not supported by MBart."
        
    tgt_lang_code = MBART_LANGUAGE_OPTIONS[target_lang]
    
    # Set the source language
    tokenizer.src_lang = src_lang_code
    
    try:
        # Tokenize the input text
        encoded = tokenizer(text, return_tensors="pt").to(device)
        
        # Generate translation
        generated_tokens = model.generate(
            **encoded,
            forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang_code],
            max_length=1024,
        )
        
        # Decode the generated tokens
        translation = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
        
        return f"Source Language: {source_lang_display}\nTranslation ({target_lang}):\n\n{translation}"
    
    except Exception as e:
        return f"An error occurred during MBart translation: {str(e)}"

def translate_nllb_distilled(text, source_lang, target_lang):
    if not text:
        return "Please enter text to translate."
    
    # If source language is not specified, detect it
    if source_lang == "Auto-detect":
        try:
            detected_lang = detect(text)
            if detected_lang in LANGDETECT_TO_NLLB_DISTILLED:
                src_lang_code = LANGDETECT_TO_NLLB_DISTILLED[detected_lang]
                source_lang_display = f"Auto-detected: {[k for k, v in NLLB_DISTILLED_LANGUAGE_OPTIONS.items() if v == src_lang_code][0]}"
            else:
                return f"Detected language '{detected_lang}' is not supported by NLLB Distilled."
        except:
            return "Could not detect language. Please select a source language manually."
    else:
        if source_lang not in NLLB_DISTILLED_LANGUAGE_OPTIONS:
            return f"Language '{source_lang}' is not supported by NLLB Distilled."
        src_lang_code = NLLB_DISTILLED_LANGUAGE_OPTIONS[source_lang]
        source_lang_display = source_lang
    
    if target_lang not in NLLB_DISTILLED_LANGUAGE_OPTIONS:
        return f"Target language '{target_lang}' is not supported by NLLB Distilled."
        
    tgt_lang_code = NLLB_DISTILLED_LANGUAGE_OPTIONS[target_lang]
    
    try:
        # Translate using NLLB Distilled pipeline
        result = nllb_distilled_pipe(text, src_lang=src_lang_code, tgt_lang=tgt_lang_code)
        translation = result[0]['translation_text']
        
        return f"Source Language: {source_lang_display}\nTranslation ({target_lang}):\n\n{translation}"
    
    except Exception as e:
        return f"An error occurred during NLLB Distilled translation: {str(e)}"

def translate_narsil_nllb(text, source_lang, target_lang):
    if not text:
        return "Please enter text to translate."
    
    # If source language is not specified, detect it
    if source_lang == "Auto-detect":
        try:
            detected_lang = detect(text)
            if detected_lang in LANGDETECT_TO_NARSIL_NLLB:
                src_lang_code = LANGDETECT_TO_NARSIL_NLLB[detected_lang]
                source_lang_display = f"Auto-detected: {[k for k, v in NARSIL_NLLB_LANGUAGE_OPTIONS.items() if v == src_lang_code][0]}"
            else:
                return f"Detected language '{detected_lang}' is not supported by Narsil/NLLB."
        except:
            return "Could not detect language. Please select a source language manually."
    else:
        if source_lang not in NARSIL_NLLB_LANGUAGE_OPTIONS:
            return f"Language '{source_lang}' is not supported by Narsil/NLLB."
        src_lang_code = NARSIL_NLLB_LANGUAGE_OPTIONS[source_lang]
        source_lang_display = source_lang
    
    if target_lang not in NARSIL_NLLB_LANGUAGE_OPTIONS:
        return f"Target language '{target_lang}' is not supported by Narsil/NLLB."
        
    tgt_lang_code = NARSIL_NLLB_LANGUAGE_OPTIONS[target_lang]
    
    try:
        # Translate using Narsil/NLLB pipeline
        result = narsil_nllb_pipe(text, src_lang=src_lang_code, tgt_lang=tgt_lang_code)
        translation = result[0]['translation_text']
        
        return f"Source Language: {source_lang_display}\nTranslation ({target_lang}):\n\n{translation}"
    
    except Exception as e:
        return f"An error occurred during Narsil/NLLB translation: {str(e)}"

def translate_all(text, source_lang, target_lang):
    # Call all translation functions
    mbart_result = translate_mbart(text, source_lang, target_lang)
    nllb_distilled_result = translate_nllb_distilled(text, source_lang, target_lang)
    narsil_nllb_result = translate_narsil_nllb(text, source_lang, target_lang)
    
    return mbart_result, nllb_distilled_result, narsil_nllb_result

# Get all languages supported by at least one model
all_languages = sorted(list(set(MBART_LANGUAGE_OPTIONS.keys()) | 
                            set(NLLB_DISTILLED_LANGUAGE_OPTIONS.keys()) | 
                            set(NARSIL_NLLB_LANGUAGE_OPTIONS.keys())))

# Create the Gradio interface
source_languages = ["Auto-detect"] + all_languages
target_languages = all_languages

with gr.Blocks(title="Multi-Model Translation") as app:
    gr.Markdown("# Multilingual Translation System")
    gr.Markdown("Enter text to translate. If source language is not specified, it will be auto-detected.")
    
    with gr.Row():
        with gr.Column():
            input_text = gr.Textbox(label="Text to translate", lines=10, placeholder="Enter text here...")
            
            with gr.Row():
                source_lang = gr.Dropdown(
                    choices=source_languages,
                    value="Auto-detect",
                    label="Source Language"
                )
                
                target_lang = gr.Dropdown(
                    choices=target_languages,
                    value="English",
                    label="Target Language"
                )
                
            translate_btn = gr.Button("Translate")
        
    with gr.Row():
        with gr.Column():
            gr.Markdown("### MBart Translation")
            mbart_output = gr.Textbox(label="MBart Translation Output", lines=10)
            
        with gr.Column():
            gr.Markdown("### NLLB Distilled Translation")
            nllb_distilled_output = gr.Textbox(label="NLLB Distilled Translation Output", lines=10)
            
        with gr.Column():
            gr.Markdown("### Narsil/NLLB Translation")
            narsil_nllb_output = gr.Textbox(label="Narsil/NLLB Translation Output", lines=10)
    
    translate_btn.click(
        fn=translate_all,
        inputs=[input_text, source_lang, target_lang],
        outputs=[mbart_output, nllb_distilled_output, narsil_nllb_output]
    )
    
    gr.Markdown("### Supported Languages")
    gr.Markdown("Note: Not all languages are supported by all models. If a language is not supported by a model, it will show an error message.")
    
    with gr.Accordion("MBart Supported Languages", open=False):
        gr.Markdown(", ".join(sorted(MBART_LANGUAGE_OPTIONS.keys())))
        
    with gr.Accordion("NLLB Distilled Supported Languages", open=False):
        gr.Markdown(", ".join(sorted(NLLB_DISTILLED_LANGUAGE_OPTIONS.keys())))
        
    with gr.Accordion("Narsil/NLLB Supported Languages", open=False):
        gr.Markdown(", ".join(sorted(NARSIL_NLLB_LANGUAGE_OPTIONS.keys())))

# Launch the app
if __name__ == "__main__":
    app.launch(debug=True)