File size: 14,146 Bytes
c8018e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import gradio as gr
import torch
from transformers import MBartForConditionalGeneration, MBartTokenizer, pipeline
from langdetect import detect
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load MBart model and tokenizer
model_name = "facebook/mbart-large-50-many-to-many-mmt"
tokenizer = MBartTokenizer.from_pretrained(model_name)
model = MBartForConditionalGeneration.from_pretrained(model_name).to(device)
# Load NLLB models
nllb_distilled_pipe = pipeline("translation", model="facebook/nllb-200-distilled-600M", device=0 if device == "cuda" else -1)
narsil_nllb_pipe = pipeline("translation", model="Narsil/nllb", device=0 if device == "cuda" else -1)
# Create dictionaries mapping language names to language codes for each model
# MBart languages
MBART_LANGUAGE_OPTIONS = {
"Arabic": "ar_AR", "Czech": "cs_CZ", "German": "de_DE", "English": "en_XX",
"Spanish": "es_XX", "Estonian": "et_EE", "Finnish": "fi_FI", "French": "fr_XX",
"Gujarati": "gu_IN", "Hindi": "hi_IN", "Italian": "it_IT", "Japanese": "ja_XX",
"Kazakh": "kk_KZ", "Korean": "ko_KR", "Lithuanian": "lt_LT", "Latvian": "lv_LV",
"Burmese": "my_MM", "Nepali": "ne_NP", "Dutch": "nl_XX", "Romanian": "ro_RO",
"Russian": "ru_RU", "Sinhala": "si_LK", "Turkish": "tr_TR", "Vietnamese": "vi_VN",
"Chinese": "zh_CN", "Afrikaans": "af_ZA", "Azerbaijani": "az_AZ", "Bengali": "bn_IN",
"Persian": "fa_IR", "Hebrew": "he_IL", "Croatian": "hr_HR", "Indonesian": "id_ID",
"Georgian": "ka_GE", "Khmer": "km_KH", "Macedonian": "mk_MK", "Malayalam": "ml_IN",
"Mongolian": "mn_MN", "Marathi": "mr_IN", "Polish": "pl_PL", "Pashto": "ps_AF",
"Portuguese": "pt_XX", "Swedish": "sv_SE", "Swahili": "sw_KE", "Tamil": "ta_IN",
"Telugu": "te_IN", "Thai": "th_TH", "Tagalog": "tl_XX", "Ukrainian": "uk_UA",
"Urdu": "ur_PK", "Xhosa": "xh_ZA", "Galician": "gl_ES", "Slovene": "sl_SI"
}
# NLLB Distilled language codes
NLLB_DISTILLED_LANGUAGE_OPTIONS = {
"Arabic": "ara_Arab", "Bulgarian": "bul_Cyrl", "Czech": "ces_Latn", "Danish": "dan_Latn",
"German": "deu_Latn", "Greek": "ell_Grek", "English": "eng_Latn", "Finnish": "fin_Latn",
"French": "fra_Latn", "Hindi": "hin_Deva", "Hungarian": "hun_Latn", "Italian": "ita_Latn",
"Japanese": "jpn_Jpan", "Korean": "kor_Hang", "Dutch": "nld_Latn", "Polish": "pol_Latn",
"Portuguese": "por_Latn", "Russian": "rus_Cyrl", "Spanish": "spa_Latn", "Swedish": "swe_Latn",
"Thai": "tha_Thai", "Turkish": "tur_Latn", "Ukrainian": "ukr_Cyrl", "Vietnamese": "vie_Latn",
"Chinese": "zho_Hans"
}
# Narsil/nllb language codes
NARSIL_NLLB_LANGUAGE_OPTIONS = {
"Amharic": "amh_Ethi", "Arabic": "ara_Arab", "Bengali": "ben_Beng", "Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn", "Czech": "ces_Latn", "Danish": "dan_Latn", "German": "deu_Latn",
"Greek": "ell_Grek", "English": "eng_Latn", "Finnish": "fin_Latn", "French": "fra_Latn",
"Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Hungarian": "hun_Latn", "Italian": "ita_Latn",
"Japanese": "jpn_Jpan", "Korean": "kor_Hang", "Marathi": "mar_Deva", "Dutch": "nld_Latn",
"Norwegian": "nob_Latn", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Romanian": "ron_Latn",
"Russian": "rus_Cyrl", "Spanish": "spa_Latn", "Swedish": "swe_Latn", "Tamil": "tam_Taml",
"Telugu": "tel_Telu", "Thai": "tha_Thai", "Turkish": "tur_Latn", "Ukrainian": "ukr_Cyrl",
"Urdu": "urd_Arab", "Vietnamese": "vie_Latn", "Chinese": "zho_Hans"
}
# Map from langdetect codes to model-specific codes
LANGDETECT_TO_MBART = {
'ar': 'ar_AR', 'cs': 'cs_CZ', 'de': 'de_DE', 'en': 'en_XX',
'es': 'es_XX', 'et': 'et_EE', 'fi': 'fi_FI', 'fr': 'fr_XX',
'gu': 'gu_IN', 'hi': 'hi_IN', 'it': 'it_IT', 'ja': 'ja_XX',
'kk': 'kk_KZ', 'ko': 'ko_KR', 'lt': 'lt_LT', 'lv': 'lv_LV',
'my': 'my_MM', 'ne': 'ne_NP', 'nl': 'nl_XX', 'ro': 'ro_RO',
'ru': 'ru_RU', 'si': 'si_LK', 'tr': 'tr_TR', 'vi': 'vi_VN',
'zh-cn': 'zh_CN', 'zh': 'zh_CN', 'af': 'af_ZA', 'az': 'az_AZ',
'bn': 'bn_IN', 'fa': 'fa_IR', 'he': 'he_IL', 'hr': 'hr_HR',
'id': 'id_ID', 'ka': 'ka_GE', 'km': 'km_KH', 'mk': 'mk_MK',
'ml': 'ml_IN', 'mn': 'mn_MN', 'mr': 'mr_IN', 'pl': 'pl_PL',
'ps': 'ps_AF', 'pt': 'pt_XX', 'sv': 'sv_SE', 'sw': 'sw_KE',
'ta': 'ta_IN', 'te': 'te_IN', 'th': 'th_TH', 'tl': 'tl_XX',
'uk': 'uk_UA', 'ur': 'ur_PK', 'xh': 'xh_ZA', 'gl': 'gl_ES',
'sl': 'sl_SI'
}
# Create mappings from langdetect codes to NLLB codes
LANGDETECT_TO_NLLB_DISTILLED = {
'ar': 'ara_Arab', 'bg': 'bul_Cyrl', 'cs': 'ces_Latn', 'da': 'dan_Latn',
'de': 'deu_Latn', 'el': 'ell_Grek', 'en': 'eng_Latn', 'fi': 'fin_Latn',
'fr': 'fra_Latn', 'hi': 'hin_Deva', 'hu': 'hun_Latn', 'it': 'ita_Latn',
'ja': 'jpn_Jpan', 'ko': 'kor_Hang', 'nl': 'nld_Latn', 'pl': 'pol_Latn',
'pt': 'por_Latn', 'ru': 'rus_Cyrl', 'es': 'spa_Latn', 'sv': 'swe_Latn',
'th': 'tha_Thai', 'tr': 'tur_Latn', 'uk': 'ukr_Cyrl', 'vi': 'vie_Latn',
'zh': 'zho_Hans', 'zh-cn': 'zho_Hans'
}
LANGDETECT_TO_NARSIL_NLLB = {
'am': 'amh_Ethi', 'ar': 'ara_Arab', 'bn': 'ben_Beng', 'bg': 'bul_Cyrl',
'ca': 'cat_Latn', 'cs': 'ces_Latn', 'da': 'dan_Latn', 'de': 'deu_Latn',
'el': 'ell_Grek', 'en': 'eng_Latn', 'fi': 'fin_Latn', 'fr': 'fra_Latn',
'he': 'heb_Hebr', 'hi': 'hin_Deva', 'hu': 'hun_Latn', 'it': 'ita_Latn',
'ja': 'jpn_Jpan', 'ko': 'kor_Hang', 'mr': 'mar_Deva', 'nl': 'nld_Latn',
'no': 'nob_Latn', 'pl': 'pol_Latn', 'pt': 'por_Latn', 'ro': 'ron_Latn',
'ru': 'rus_Cyrl', 'es': 'spa_Latn', 'sv': 'swe_Latn', 'ta': 'tam_Taml',
'te': 'tel_Telu', 'th': 'tha_Thai', 'tr': 'tur_Latn', 'uk': 'ukr_Cyrl',
'ur': 'urd_Arab', 'vi': 'vie_Latn', 'zh': 'zho_Hans', 'zh-cn': 'zho_Hans'
}
def translate_mbart(text, source_lang, target_lang):
if not text:
return "Please enter text to translate."
# If source language is not specified, detect it
if source_lang == "Auto-detect":
try:
detected_lang = detect(text)
if detected_lang in LANGDETECT_TO_MBART:
src_lang_code = LANGDETECT_TO_MBART[detected_lang]
source_lang_display = f"Auto-detected: {[k for k, v in MBART_LANGUAGE_OPTIONS.items() if v == src_lang_code][0]}"
else:
return f"Detected language '{detected_lang}' is not supported by MBart."
except:
return "Could not detect language. Please select a source language manually."
else:
if source_lang not in MBART_LANGUAGE_OPTIONS:
return f"Language '{source_lang}' is not supported by MBart."
src_lang_code = MBART_LANGUAGE_OPTIONS[source_lang]
source_lang_display = source_lang
if target_lang not in MBART_LANGUAGE_OPTIONS:
return f"Target language '{target_lang}' is not supported by MBart."
tgt_lang_code = MBART_LANGUAGE_OPTIONS[target_lang]
# Set the source language
tokenizer.src_lang = src_lang_code
try:
# Tokenize the input text
encoded = tokenizer(text, return_tensors="pt").to(device)
# Generate translation
generated_tokens = model.generate(
**encoded,
forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang_code],
max_length=1024,
)
# Decode the generated tokens
translation = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
return f"Source Language: {source_lang_display}\nTranslation ({target_lang}):\n\n{translation}"
except Exception as e:
return f"An error occurred during MBart translation: {str(e)}"
def translate_nllb_distilled(text, source_lang, target_lang):
if not text:
return "Please enter text to translate."
# If source language is not specified, detect it
if source_lang == "Auto-detect":
try:
detected_lang = detect(text)
if detected_lang in LANGDETECT_TO_NLLB_DISTILLED:
src_lang_code = LANGDETECT_TO_NLLB_DISTILLED[detected_lang]
source_lang_display = f"Auto-detected: {[k for k, v in NLLB_DISTILLED_LANGUAGE_OPTIONS.items() if v == src_lang_code][0]}"
else:
return f"Detected language '{detected_lang}' is not supported by NLLB Distilled."
except:
return "Could not detect language. Please select a source language manually."
else:
if source_lang not in NLLB_DISTILLED_LANGUAGE_OPTIONS:
return f"Language '{source_lang}' is not supported by NLLB Distilled."
src_lang_code = NLLB_DISTILLED_LANGUAGE_OPTIONS[source_lang]
source_lang_display = source_lang
if target_lang not in NLLB_DISTILLED_LANGUAGE_OPTIONS:
return f"Target language '{target_lang}' is not supported by NLLB Distilled."
tgt_lang_code = NLLB_DISTILLED_LANGUAGE_OPTIONS[target_lang]
try:
# Translate using NLLB Distilled pipeline
result = nllb_distilled_pipe(text, src_lang=src_lang_code, tgt_lang=tgt_lang_code)
translation = result[0]['translation_text']
return f"Source Language: {source_lang_display}\nTranslation ({target_lang}):\n\n{translation}"
except Exception as e:
return f"An error occurred during NLLB Distilled translation: {str(e)}"
def translate_narsil_nllb(text, source_lang, target_lang):
if not text:
return "Please enter text to translate."
# If source language is not specified, detect it
if source_lang == "Auto-detect":
try:
detected_lang = detect(text)
if detected_lang in LANGDETECT_TO_NARSIL_NLLB:
src_lang_code = LANGDETECT_TO_NARSIL_NLLB[detected_lang]
source_lang_display = f"Auto-detected: {[k for k, v in NARSIL_NLLB_LANGUAGE_OPTIONS.items() if v == src_lang_code][0]}"
else:
return f"Detected language '{detected_lang}' is not supported by Narsil/NLLB."
except:
return "Could not detect language. Please select a source language manually."
else:
if source_lang not in NARSIL_NLLB_LANGUAGE_OPTIONS:
return f"Language '{source_lang}' is not supported by Narsil/NLLB."
src_lang_code = NARSIL_NLLB_LANGUAGE_OPTIONS[source_lang]
source_lang_display = source_lang
if target_lang not in NARSIL_NLLB_LANGUAGE_OPTIONS:
return f"Target language '{target_lang}' is not supported by Narsil/NLLB."
tgt_lang_code = NARSIL_NLLB_LANGUAGE_OPTIONS[target_lang]
try:
# Translate using Narsil/NLLB pipeline
result = narsil_nllb_pipe(text, src_lang=src_lang_code, tgt_lang=tgt_lang_code)
translation = result[0]['translation_text']
return f"Source Language: {source_lang_display}\nTranslation ({target_lang}):\n\n{translation}"
except Exception as e:
return f"An error occurred during Narsil/NLLB translation: {str(e)}"
def translate_all(text, source_lang, target_lang):
# Call all translation functions
mbart_result = translate_mbart(text, source_lang, target_lang)
nllb_distilled_result = translate_nllb_distilled(text, source_lang, target_lang)
narsil_nllb_result = translate_narsil_nllb(text, source_lang, target_lang)
return mbart_result, nllb_distilled_result, narsil_nllb_result
# Get all languages supported by at least one model
all_languages = sorted(list(set(MBART_LANGUAGE_OPTIONS.keys()) |
set(NLLB_DISTILLED_LANGUAGE_OPTIONS.keys()) |
set(NARSIL_NLLB_LANGUAGE_OPTIONS.keys())))
# Create the Gradio interface
source_languages = ["Auto-detect"] + all_languages
target_languages = all_languages
with gr.Blocks(title="Multi-Model Translation") as app:
gr.Markdown("# Multilingual Translation System")
gr.Markdown("Enter text to translate. If source language is not specified, it will be auto-detected.")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Text to translate", lines=10, placeholder="Enter text here...")
with gr.Row():
source_lang = gr.Dropdown(
choices=source_languages,
value="Auto-detect",
label="Source Language"
)
target_lang = gr.Dropdown(
choices=target_languages,
value="English",
label="Target Language"
)
translate_btn = gr.Button("Translate")
with gr.Row():
with gr.Column():
gr.Markdown("### MBart Translation")
mbart_output = gr.Textbox(label="MBart Translation Output", lines=10)
with gr.Column():
gr.Markdown("### NLLB Distilled Translation")
nllb_distilled_output = gr.Textbox(label="NLLB Distilled Translation Output", lines=10)
with gr.Column():
gr.Markdown("### Narsil/NLLB Translation")
narsil_nllb_output = gr.Textbox(label="Narsil/NLLB Translation Output", lines=10)
translate_btn.click(
fn=translate_all,
inputs=[input_text, source_lang, target_lang],
outputs=[mbart_output, nllb_distilled_output, narsil_nllb_output]
)
gr.Markdown("### Supported Languages")
gr.Markdown("Note: Not all languages are supported by all models. If a language is not supported by a model, it will show an error message.")
with gr.Accordion("MBart Supported Languages", open=False):
gr.Markdown(", ".join(sorted(MBART_LANGUAGE_OPTIONS.keys())))
with gr.Accordion("NLLB Distilled Supported Languages", open=False):
gr.Markdown(", ".join(sorted(NLLB_DISTILLED_LANGUAGE_OPTIONS.keys())))
with gr.Accordion("Narsil/NLLB Supported Languages", open=False):
gr.Markdown(", ".join(sorted(NARSIL_NLLB_LANGUAGE_OPTIONS.keys())))
# Launch the app
if __name__ == "__main__":
app.launch(debug=True) |