ai_agents_sustainable / models /image_models.py
Chamin09's picture
Update models/image_models.py
5aea4f1 verified
# models/image_models.py
import logging
import os
import torch
from typing import Dict, List, Optional, Tuple, Union, Any
from PIL import Image
import numpy as np
from transformers import BlipProcessor, BlipForConditionalGeneration
from transformers import Blip2Processor, Blip2ForConditionalGeneration
class ImageModelManager:
def __init__(self, token_manager=None, cache_manager=None, metrics_calculator=None):
"""Initialize the ImageModelManager with optional utilities."""
self.logger = logging.getLogger(__name__)
self.token_manager = token_manager
self.cache_manager = cache_manager
self.metrics_calculator = metrics_calculator
# Model instances
self.lightweight_model = None
self.lightweight_processor = None
self.advanced_model = None
self.advanced_processor = None
# Model names
self.lightweight_model_name = "Salesforce/blip-image-captioning-base"
self.advanced_model_name = "Salesforce/blip2-opt-2.7b"
# Track initialization state
self.initialized = {
"lightweight": False,
"advanced": False
}
# Default complexity thresholds
self.complexity_thresholds = {
"entropy": 4.5, # Higher entropy suggests more complex image
"edge_density": 0.15, # Higher edge density suggests more details
"size": 500000 # Larger images may contain more information
}
def initialize_lightweight_model(self):
"""Initialize the lightweight image captioning model."""
if self.initialized["lightweight"]:
return
try:
# Register with token manager if available
if self.token_manager:
self.token_manager.register_model(
self.lightweight_model_name, "image_captioning")
# Load model and processor
self.logger.info(f"Loading lightweight image model: {self.lightweight_model_name}")
self.lightweight_processor = BlipProcessor.from_pretrained(self.lightweight_model_name)
self.lightweight_model = BlipForConditionalGeneration.from_pretrained(
self.lightweight_model_name, torch_dtype=torch.float32)
self.initialized["lightweight"] = True
self.logger.info("Lightweight image model initialized successfully")
except Exception as e:
self.logger.error(f"Failed to initialize lightweight image model: {e}")
raise
def initialize_advanced_model(self):
"""Initialize the advanced image captioning model."""
if self.initialized["advanced"]:
return
try:
# Register with token manager if available
if self.token_manager:
self.token_manager.register_model(
self.advanced_model_name, "image_captioning")
# Load model and processor
self.logger.info(f"Loading advanced image model: {self.advanced_model_name}")
self.advanced_processor = Blip2Processor.from_pretrained(self.advanced_model_name)
self.advanced_model = Blip2ForConditionalGeneration.from_pretrained(
self.advanced_model_name, torch_dtype=torch.float32)
self.initialized["advanced"] = True
self.logger.info("Advanced image model initialized successfully")
except Exception as e:
self.logger.error(f"Failed to initialize advanced image model: {e}")
raise
def determine_image_complexity(self, image: Image.Image) -> Dict[str, float]:
"""
Determine the complexity of an image to guide model selection.
Returns complexity metrics.
"""
# Convert to numpy array
img_array = np.array(image.convert("L")) # Convert to grayscale for analysis
# Calculate image entropy (measure of randomness/information)
histogram = np.histogram(img_array, bins=256, range=(0, 256))[0]
histogram = histogram / histogram.sum()
non_zero = histogram > 0
entropy = -np.sum(histogram[non_zero] * np.log2(histogram[non_zero]))
# Calculate edge density using simple gradient method
gradient_x = np.abs(np.diff(img_array, axis=1, prepend=0))
gradient_y = np.abs(np.diff(img_array, axis=0, prepend=0))
gradient_magnitude = np.sqrt(gradient_x**2 + gradient_y**2)
edge_density = np.mean(gradient_magnitude > 30) # Threshold for edge detection
# Get image size in pixels
size = image.width * image.height
return {
"entropy": float(entropy),
"edge_density": float(edge_density),
"size": size
}
def select_captioning_model(self, image: Image.Image) -> str:
"""
Select the appropriate captioning model based on image complexity.
Returns model type ("lightweight" or "advanced").
"""
# Get complexity metrics
complexity = self.determine_image_complexity(image)
# Decision logic for model selection
use_advanced = (
complexity["entropy"] > self.complexity_thresholds["entropy"] or
complexity["edge_density"] > self.complexity_thresholds["edge_density"] or
complexity["size"] > self.complexity_thresholds["size"]
)
# Log selection decision
model_type = "advanced" if use_advanced else "lightweight"
self.logger.info(f"Selected {model_type} model for image captioning (complexity: {complexity})")
# If metrics calculator is available, log model selection
if use_advanced and self.metrics_calculator:
# Estimate energy saved if we had used the advanced model
# This is a negative number since we're using more energy
energy_diff = -0.01 # Approximate difference in watt-hours
self.metrics_calculator.log_model_downgrade(
self.advanced_model_name, self.lightweight_model_name, energy_diff)
return model_type
def generate_image_caption(self, image: Union[str, Image.Image],
agent_name: str = "image_processing") -> Dict[str, Any]:
"""
Generate caption for an image, selecting appropriate model based on complexity.
Returns caption and metadata.
"""
# Handle string input (file path)
if isinstance(image, str):
if os.path.exists(image):
image = Image.open(image).convert('RGB')
else:
raise ValueError(f"Image file not found: {image}")
# Ensure image is PIL Image
if not isinstance(image, Image.Image):
raise TypeError("Image must be a PIL Image or a valid file path")
# Check cache if available
image_hash = str(hash(image.tobytes()))
if self.cache_manager:
cache_hit, cached_result = self.cache_manager.get(
image_hash, namespace="image_captions")
if cache_hit:
# Update metrics if available
if self.metrics_calculator:
self.metrics_calculator.update_cache_metrics(1, 0, 0.01) # Estimated energy saving
return cached_result
# Select model based on image complexity
model_type = self.select_captioning_model(image)
# Initialize selected model if needed
if model_type == "advanced":
if not self.initialized["advanced"]:
self.initialize_advanced_model()
processor = self.advanced_processor
model = self.advanced_model
model_name = self.advanced_model_name
else:
if not self.initialized["lightweight"]:
self.initialize_lightweight_model()
processor = self.lightweight_processor
model = self.lightweight_model
model_name = self.lightweight_model_name
# Process image
inputs = processor(image, return_tensors="pt")
# Request token budget if available
if self.token_manager:
# Estimate token usage (approximate)
estimated_tokens = 50 # Base tokens for generation
approved, reason = self.token_manager.request_tokens(
agent_name, "image_captioning", "", model_name)
if not approved:
self.logger.warning(f"Token budget exceeded: {reason}")
return {"caption": "Token budget exceeded", "error": reason}
# Generate caption
with torch.no_grad():
if model_type == "advanced":
pixel_values = inputs.pixel_values.to(torch.float32)
generated_ids = model.generate(
pixel_values=inputs.pixel_values,
max_new_tokens=50, # Using max_new_tokens instead of max_length
num_beams=5
)
caption = processor.decode(generated_ids[0], skip_special_tokens=True)
else:
outputs = model.generate(
**inputs,
max_new_tokens=50, # Using max_new_tokens instead of max_length
num_beams=5
)
caption = processor.decode(outputs[0], skip_special_tokens=True)
# # Generate caption
# with torch.no_grad():
# if model_type == "advanced":
# generated_ids = model.generate(
# pixel_values=inputs.pixel_values,
# max_length=30,
# num_beams=5
# )
# caption = processor.decode(generated_ids[0], skip_special_tokens=True)
# else:
# outputs = model.generate(**inputs, max_length=30, num_beams=5)
# caption = processor.decode(outputs[0], skip_special_tokens=True)
# Prepare result
result = {
"caption": caption,
"model_used": model_type,
"complexity": self.determine_image_complexity(image),
"confidence": 0.9 if model_type == "advanced" else 0.7 # Estimated confidence
}
# Log token usage if available
if self.token_manager:
# Approximate token count based on output length
token_count = len(caption.split()) + 20 # Base tokens + output
self.token_manager.log_usage(
agent_name, "image_captioning", token_count, model_name)
# Log energy usage if metrics calculator is available
if self.metrics_calculator:
energy_usage = self.token_manager.calculate_energy_usage(
token_count, model_name)
self.metrics_calculator.log_energy_usage(
energy_usage, model_name, agent_name, "image_captioning")
# Store in cache if available
if self.cache_manager:
self.cache_manager.put(image_hash, result, namespace="image_captions")
return result
def match_images_to_topic(self, topic: str, image_captions: List[Dict[str, Any]],
text_model_manager=None) -> List[float]:
"""
Match image captions to the user's topic using semantic similarity.
Returns relevance scores for each image.
"""
if not text_model_manager:
self.logger.warning("No text model manager provided for semantic matching")
return [0.5] * len(image_captions) # Default mid-range relevance
# Extract captions
captions = [item["caption"] for item in image_captions]
# Use text model to compute similarity
similarities = text_model_manager.compute_similarity(topic, captions)
return similarities