File size: 12,036 Bytes
543e824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# models/text_models.py
import logging
from typing import Dict, List, Optional, Tuple, Union, Any
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from sentence_transformers import SentenceTransformer

class TextModelManager:
    def __init__(self, token_manager=None, cache_manager=None, metrics_calculator=None):
        """Initialize the TextModelManager with optional utilities."""
        self.logger = logging.getLogger(__name__)
        self.token_manager = token_manager
        self.cache_manager = cache_manager
        self.metrics_calculator = metrics_calculator
        
        # Model instances
        self.embedding_model = None
        self.understanding_model = None
        self.embedding_tokenizer = None
        self.understanding_tokenizer = None
        
        # Model names
        self.embedding_model_name = "sentence-transformers/all-MiniLM-L6-v2"
        self.understanding_model_name = "microsoft/deberta-v3-small"
        
        # Track initialization state
        self.initialized = {
            "embedding": False,
            "understanding": False
        }
        
    def initialize_embedding_model(self):
        """Initialize the embedding model for topic-document relevance."""
        if self.initialized["embedding"]:
            return
            
        try:
            # Register with token manager if available
            if self.token_manager:
                self.token_manager.register_model(
                    self.embedding_model_name, "embedding")
                
            # Load model
            self.logger.info(f"Loading embedding model: {self.embedding_model_name}")
            self.embedding_model = SentenceTransformer(self.embedding_model_name)
            
            # Also load tokenizer separately for token counting
            self.embedding_tokenizer = AutoTokenizer.from_pretrained(
                self.embedding_model_name)
                
            self.initialized["embedding"] = True
            self.logger.info("Embedding model initialized successfully")
            
        except Exception as e:
            self.logger.error(f"Failed to initialize embedding model: {e}")
            raise
            
    def initialize_understanding_model(self):
        """Initialize the understanding model for document analysis."""
        if self.initialized["understanding"]:
            return
            
        try:
            model_name = self.understanding_model_name
            # Register with token manager if available
            if self.token_manager:
                self.token_manager.register_model(
                    self.understanding_model_name, "understanding")
                
            # Load model and tokenizer
            self.logger.info(f"Loading understanding model: {self.understanding_model_name}")
            self.understanding_tokenizer = AutoTokenizer.from_pretrained(
                self.understanding_model_name)
            self.understanding_model = AutoModel.from_pretrained(
                self.understanding_model_name)
                
            self.initialized["understanding"] = True
            self.logger.info("Understanding model initialized successfully")
            
        except Exception as e:
            self.logger.error(f"Failed to initialize understanding model: {e}")
            # Try fallback model if primary fails
            try:
                fallback_model = "distilbert-base-uncased"
                self.logger.info(f"Trying fallback model: {fallback_model}")
                self.understanding_tokenizer = AutoTokenizer.from_pretrained(fallback_model)
                self.understanding_model = AutoModel.from_pretrained(fallback_model)
                self.understanding_model_name = fallback_model
                self.initialized["understanding"] = True
                self.logger.info("Fallback understanding model initialized successfully")
            except Exception as fallback_error:
                self.logger.error(f"Failed to initialize fallback model: {fallback_error}")
                raise
            
    def get_embeddings(self, texts: Union[str, List[str]], 
                       agent_name: str = "text_analysis") -> np.ndarray:
        """
        Generate embeddings for the given texts.
        Optimized with caching and token tracking.
        """
        # Initialize model if needed
        if not self.initialized["embedding"]:
            self.initialize_embedding_model()
            
        # Handle single text
        if isinstance(texts, str):
            texts = [texts]
            
        results = []
        cache_hits = 0
        tokens_used = 0
        
        for text in texts:
            # Check cache if available
            if self.cache_manager:
                cache_hit, cached_embedding = self.cache_manager.get(
                    text, namespace="embeddings")
                    
                if cache_hit:
                    results.append(cached_embedding)
                    cache_hits += 1
                    continue
            
            # Request token budget if available
            if self.token_manager:
                approved, reason = self.token_manager.request_tokens(
                    agent_name, "embedding", text, self.embedding_model_name)
                    
                if not approved:
                    self.logger.warning(f"Token budget exceeded: {reason}")
                    # Return zeros as fallback
                    results.append(np.zeros(384))  # Default embedding dimension
                    continue
            
            # Generate embedding
            with torch.no_grad():
                embedding = self.embedding_model.encode(text)
                
            # Store in cache if available
            if self.cache_manager:
                self.cache_manager.put(text, embedding, namespace="embeddings", 
                                      embedding=embedding)
                
            # Log token usage if available
            if self.token_manager:
                token_count = len(self.embedding_tokenizer.encode(text))
                self.token_manager.log_usage(
                    agent_name, "embedding", token_count, self.embedding_model_name)
                tokens_used += token_count
                
                # Log energy usage if metrics calculator is available
                if self.metrics_calculator:
                    energy_usage = self.token_manager.calculate_energy_usage(
                        token_count, self.embedding_model_name)
                    self.metrics_calculator.log_energy_usage(
                        energy_usage, self.embedding_model_name, 
                        agent_name, "embedding")
            
            results.append(embedding)
        
        # Update cache metrics if available
        if self.cache_manager and self.metrics_calculator:
            # Estimate energy saved through cache hits
            if cache_hits > 0 and tokens_used > 0:
                avg_tokens_per_text = tokens_used / (len(texts) - cache_hits)
                estimated_tokens_saved = avg_tokens_per_text * cache_hits
                
                if self.token_manager:
                    energy_saved = self.token_manager.calculate_energy_usage(
                        estimated_tokens_saved, self.embedding_model_name)
                    
                    self.metrics_calculator.update_cache_metrics(
                        cache_hits, len(texts) - cache_hits, energy_saved)
        
        # Return single embedding or list based on input
        if len(results) == 1 and isinstance(texts, str):
            return results[0]
        return np.array(results)
    
    def compute_similarity(self, topic: str, documents: List[str], 
                           agent_name: str = "text_analysis") -> List[float]:
        """
        Compute semantic similarity between topic and documents.
        Returns list of similarity scores (0-1).
        """
        # Get embeddings
        topic_embedding = self.get_embeddings(topic, agent_name)
        doc_embeddings = self.get_embeddings(documents, agent_name)
        
        # Compute similarities
        similarities = []
        for doc_embedding in doc_embeddings:
            # Cosine similarity
            similarity = np.dot(topic_embedding, doc_embedding) / (
                np.linalg.norm(topic_embedding) * np.linalg.norm(doc_embedding))
            similarities.append(float(similarity))
            
        return similarities
    
    def analyze_document(self, document: str, query: str = None,
                         agent_name: str = "text_analysis") -> Dict[str, Any]:
        """
        Analyze document content using the understanding model.
        If query is provided, focuses analysis on that query.
        """
        # Initialize model if needed
        if not self.initialized["understanding"]:
            self.initialize_understanding_model()
            
        # Check cache if available
        cache_key = f"{document}::{query}" if query else document
        if self.cache_manager:
            cache_hit, cached_result = self.cache_manager.get(
                cache_key, namespace="document_analysis")
                
            if cache_hit:
                # Update metrics if available
                if self.metrics_calculator:
                    self.metrics_calculator.update_cache_metrics(1, 0, 0.005)  # Estimated energy saving
                return cached_result
        
        # Prepare input
        if query:
            input_text = f"Query: {query}\nDocument: {document}"
        else:
            input_text = document
            
        # Request token budget if available
        if self.token_manager:
            approved, reason = self.token_manager.request_tokens(
                agent_name, "understanding", input_text, self.understanding_model_name)
                
            if not approved:
                self.logger.warning(f"Token budget exceeded: {reason}")
                return {"error": reason, "summary": "Token budget exceeded"}
        
        # Tokenize
        inputs = self.understanding_tokenizer(
            input_text, return_tensors="pt", truncation=True, max_length=512)
            
        # Get model outputs
        with torch.no_grad():
            outputs = self.understanding_model(**inputs)
            
        # Process outputs - using last hidden state for analysis
        last_hidden_state = outputs.last_hidden_state
        
        # Extract key information (simplified for demonstration)
        # In a real implementation, we'd use more sophisticated analysis
        mean_embedding = torch.mean(last_hidden_state, dim=1).squeeze().numpy()
        
        # Create analysis result
        result = {
            "document_length": len(document.split()),
            "embedding_norm": float(np.linalg.norm(mean_embedding)),
            "content_vector": mean_embedding.tolist()[:10]  # First 10 dims as sample
        }
        
        # Log token usage if available
        if self.token_manager:
            token_count = len(inputs.input_ids[0])
            self.token_manager.log_usage(
                agent_name, "understanding", token_count, self.understanding_model_name)
                
            # Log energy usage if metrics calculator is available
            if self.metrics_calculator:
                energy_usage = self.token_manager.calculate_energy_usage(
                    token_count, self.understanding_model_name)
                self.metrics_calculator.log_energy_usage(
                    energy_usage, self.understanding_model_name, 
                    agent_name, "understanding")
        
        # Store in cache if available
        if self.cache_manager:
            self.cache_manager.put(cache_key, result, namespace="document_analysis")
            
        return result