Spaces:
Sleeping
Sleeping
File size: 11,408 Bytes
a40ee8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# models/summary_models.py
import logging
from typing import Dict, List, Optional, Tuple, Union, Any
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
class SummaryModelManager:
def __init__(self, token_manager=None, cache_manager=None, metrics_calculator=None):
"""Initialize the SummaryModelManager with optional utilities."""
self.logger = logging.getLogger(__name__)
self.token_manager = token_manager
self.cache_manager = cache_manager
self.metrics_calculator = metrics_calculator
# Model instance
self.model = None
self.tokenizer = None
# Model name
self.model_name = "t5-small"
# Track initialization state
self.initialized = False
# Default generation parameters
self.default_params = {
"max_length": 150,
"min_length": 40,
"length_penalty": 2.0,
"num_beams": 4,
"early_stopping": True
}
def initialize_model(self):
"""Initialize the summarization model."""
if self.initialized:
return
try:
# Register with token manager if available
if self.token_manager:
self.token_manager.register_model(
self.model_name, "summarization")
# Load model and tokenizer
self.logger.info(f"Loading summary model: {self.model_name}")
self.tokenizer = T5Tokenizer.from_pretrained(self.model_name)
self.model = T5ForConditionalGeneration.from_pretrained(self.model_name)
self.initialized = True
self.logger.info("Summary model initialized successfully")
except Exception as e:
#self.logger.error(f"Failed to initialize summary model: {e}")
#raise
# Try a fallback model that doesn't require SentencePiece
try:
fallback_model = "facebook/bart-base"
self.logger.info(f"Trying fallback model: {fallback_model}")
from transformers import BartTokenizer, BartForConditionalGeneration
self.tokenizer = BartTokenizer.from_pretrained(fallback_model)
self.model = BartForConditionalGeneration.from_pretrained(fallback_model)
self.model_name = fallback_model
# Register fallback with token manager
if self.token_manager:
self.token_manager.register_model(
self.model_name, "summarization")
self.initialized = True
self.logger.info("Fallback summary model initialized successfully")
except Exception as fallback_error:
self.logger.error(f"Failed to initialize fallback model: {fallback_error}")
raise
def generate_summary(self, text: str, prefix: str = "summarize: ",
agent_name: str = "report_generation",
params: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
"""
Generate a summary of the given text.
Returns the summary and metadata.
"""
# Initialize model if needed
if not self.initialized:
self.initialize_model()
# Prepare input text
input_text = f"{prefix}{text}"
# Check cache if available
if self.cache_manager:
cache_key = input_text[:100] + str(hash(input_text)) # Use prefix of text + hash as key
cache_hit, cached_result = self.cache_manager.get(
cache_key, namespace="summaries")
if cache_hit:
# Update metrics if available
if self.metrics_calculator:
self.metrics_calculator.update_cache_metrics(1, 0, 0.005) # Estimated energy saving
return cached_result
# Request token budget if available
if self.token_manager:
approved, reason = self.token_manager.request_tokens(
agent_name, "summarization", input_text, self.model_name)
if not approved:
self.logger.warning(f"Token budget exceeded: {reason}")
return {"summary": "Token budget exceeded", "error": reason}
# Tokenize
inputs = self.tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
# Merge default and custom parameters
generation_params = self.default_params.copy()
if params:
generation_params.update(params)
# Generate summary
with torch.no_grad():
output_ids = self.model.generate(
inputs.input_ids,
**generation_params
)
# Decode summary
summary = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Calculate compression ratio
input_length = len(text.split())
summary_length = len(summary.split())
compression_ratio = input_length / max(summary_length, 1)
# Prepare result
result = {
"summary": summary,
"input_length": input_length,
"summary_length": summary_length,
"compression_ratio": compression_ratio
}
# Log token usage if available
if self.token_manager:
input_tokens = len(inputs.input_ids[0])
output_tokens = len(output_ids[0])
total_tokens = input_tokens + output_tokens
self.token_manager.log_usage(
agent_name, "summarization", total_tokens, self.model_name)
# Log energy usage if metrics calculator is available
if self.metrics_calculator:
energy_usage = self.token_manager.calculate_energy_usage(
total_tokens, self.model_name)
self.metrics_calculator.log_energy_usage(
energy_usage, self.model_name, agent_name, "summarization")
# Store in cache if available
if self.cache_manager:
self.cache_manager.put(cache_key, result, namespace="summaries")
return result
def generate_executive_summary(self, detailed_content: str, confidence_level: float,
agent_name: str = "report_generation") -> Dict[str, Any]:
"""
Generate an executive summary with confidence indication.
Adjusts detail level based on confidence.
"""
# Prepare prompt based on confidence
if confidence_level >= 0.7:
prefix = "summarize with high confidence: "
params = {"min_length": 30, "max_length": 100}
elif confidence_level >= 0.4:
prefix = "summarize with moderate confidence: "
params = {"min_length": 20, "max_length": 80}
else:
prefix = "summarize with low confidence: "
params = {"min_length": 15, "max_length": 60}
# Generate summary
result = self.generate_summary(detailed_content, prefix=prefix,
agent_name=agent_name, params=params)
# Add confidence level to result
result["confidence_level"] = confidence_level
# Add confidence statement
confidence_statement = self._generate_confidence_statement(confidence_level)
result["confidence_statement"] = confidence_statement
return result
def _generate_confidence_statement(self, confidence_level: float) -> str:
"""Generate an appropriate confidence statement based on the level."""
if confidence_level >= 0.8:
return "This analysis is provided with high confidence based on strong evidence in the provided materials."
elif confidence_level >= 0.6:
return "This analysis is provided with good confidence based on substantial evidence in the provided materials."
elif confidence_level >= 0.4:
return "This analysis is provided with moderate confidence. Some aspects may require additional verification."
elif confidence_level >= 0.2:
return "This analysis is provided with limited confidence due to sparse relevant information in the provided materials."
else:
return "This analysis is provided with very low confidence due to insufficient relevant information in the provided materials."
def combine_analyses(self, text_analyses: List[Dict[str, Any]],
image_analyses: List[Dict[str, Any]],
topic: str, agent_name: str = "report_generation") -> Dict[str, Any]:
"""
Combine text and image analyses into a coherent report.
Returns the combined report with metadata.
"""
# Build combined content
combined_content = f"Topic: {topic}\n\n"
# Add text analyses
combined_content += "Text Analysis:\n"
for i, analysis in enumerate(text_analyses):
if "error" in analysis:
continue
combined_content += f"- Document {i+1}: {analysis.get('summary', 'No summary available')}\n"
# Add image analyses
combined_content += "\nImage Analysis:\n"
for i, analysis in enumerate(image_analyses):
if "error" in analysis:
continue
combined_content += f"- Image {i+1}: {analysis.get('caption', 'No caption available')}\n"
# Calculate overall confidence based on analyses
text_confidence = sum(a.get("confidence", 0) for a in text_analyses) / max(len(text_analyses), 1)
image_confidence = sum(a.get("confidence", 0) for a in image_analyses) / max(len(image_analyses), 1)
# Weight confidence (text analyses typically more important for deep dives)
overall_confidence = 0.7 * text_confidence + 0.3 * image_confidence
# Generate detailed report
detailed_report = self.generate_summary(
combined_content,
prefix=f"generate detailed report about {topic}: ",
agent_name=agent_name,
params={"max_length": 300, "min_length": 100}
)
# Generate executive summary
executive_summary = self.generate_executive_summary(
detailed_report["summary"],
overall_confidence,
agent_name
)
# Combine results
result = {
"topic": topic,
"executive_summary": executive_summary["summary"],
"confidence_statement": executive_summary["confidence_statement"],
"detailed_report": detailed_report["summary"],
"confidence_level": overall_confidence,
"text_confidence": text_confidence,
"image_confidence": image_confidence,
"source_count": {
"text": len(text_analyses),
"images": len(image_analyses)
}
}
return result
|