Spaces:
Sleeping
Sleeping
File size: 32,721 Bytes
b47ceab 289a057 b47ceab 882233d b47ceab 5279e4f b47ceab 1078268 b47ceab fa9e368 b47ceab fa9e368 b47ceab fa9e368 b47ceab fa9e368 b47ceab fa9e368 2a18ea8 33b3e00 b47ceab 33b3e00 9fcca0b b47ceab c73b1ec b47ceab 9769a4e b47ceab 5279e4f b47ceab 9769a4e 5279e4f 9769a4e b47ceab 9769a4e b47ceab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 |
# Updated app/orchestrator.py
import logging
import os
import time
from typing import Dict, List, Optional, Tuple, Union, Any
from datetime import datetime, timedelta
import json
from app.error_handler import ErrorHandler, with_error_handling
from app.synchronizer import Synchronizer
import threading
class Orchestrator:
def __init__(self, coordinator_agent, text_analysis_agent, image_processing_agent, report_generation_agent,metrics_agent, text_model_manager=None, image_model_manager=None,
summary_model_manager=None, token_manager=None, cache_manager=None,
metrics_calculator=None):
"""Initialize the Orchestrator with required components."""
self.logger = logging.getLogger(__name__)
self.coordinator_agent = coordinator_agent
self.text_model_manager = text_model_manager
self.image_model_manager = image_model_manager
self.summary_model_manager = summary_model_manager
self.token_manager = token_manager
self.cache_manager = cache_manager
self.metrics_calculator = metrics_calculator
# Store the agents directly
self.text_analysis_agent = text_analysis_agent
self.image_processing_agent = image_processing_agent
self.report_generation_agent = report_generation_agent
self.metrics_agent = metrics_agent
# Initialize error handler
self.error_handler = ErrorHandler(metrics_calculator=metrics_calculator)
# Register fallbacks
self._register_fallbacks()
# Track active sessions
self.active_sessions = {}
self.session_counter = 0
self.synchronizer = Synchronizer()
self._register_agents_with_synchronizer()
def _register_agents_with_synchronizer(self):
"""Register all agents with the synchronizer."""
# Register the coordinator
self.synchronizer.register_agent("coordinator_agent")
# Register other agents if available
if hasattr(self, "text_analysis_agent") and self.text_analysis_agent:
self.synchronizer.register_agent("text_analysis_agent")
if hasattr(self, "image_processing_agent") and self.image_processing_agent:
self.synchronizer.register_agent("image_processing_agent")
if hasattr(self, "report_generation_agent") and self.report_generation_agent:
self.synchronizer.register_agent("report_generation_agent")
if hasattr(self, "metrics_agent") and self.metrics_agent:
self.synchronizer.register_agent("metrics_agent")
def coordinate_workflow_with_synchronization(self, session_id: str, topic: str,
text_files: List[str], image_files: List[str]) -> Dict[str, Any]:
"""
Coordinate a workflow with explicit synchronization points.
This provides more control over the workflow execution than the standard process_request.
"""
if session_id not in self.active_sessions:
return {"error": f"Session {session_id} not found. Please create a new session."}
session = self.active_sessions[session_id]
session["status"] = "processing"
# Create a workflow ID
workflow_id = f"workflow_{int(time.time())}"
# Initialize workflow
workflow_result = self.coordinator_agent.initialize_workflow(topic, text_files, image_files)
# Store workflow ID
if "workflow_id" in workflow_result:
workflow_id = workflow_result["workflow_id"]
session["workflows"].append(workflow_id)
session["current_workflow"] = workflow_id
# Create synchronization barriers
analysis_barrier_id = self.synchronizer.create_barrier(
"analysis_complete",
["text_analysis_agent", "image_processing_agent"]
)
report_barrier_id = self.synchronizer.create_barrier(
"report_ready",
["report_generation_agent"]
)
# Set up dependencies
if hasattr(self, "report_generation_agent") and self.report_generation_agent:
self.synchronizer.register_dependencies(
"report_generation_agent",
f"generate_report_{workflow_id}",
[
("text_analysis_agent", f"analyze_text_{workflow_id}"),
("image_processing_agent", f"process_images_{workflow_id}")
]
)
# Start text analysis in background
if hasattr(self, "text_analysis_agent") and self.text_analysis_agent and text_files:
def text_analysis_task():
try:
# Process text files
result = self.text_analysis_agent.process_text_files(topic, text_files)
# Signal completion
self.synchronizer.signal_completion(
"text_analysis_agent",
f"analyze_text_{workflow_id}",
result
)
# Arrive at barrier
self.synchronizer.arrive_at_barrier(analysis_barrier_id, "text_analysis_agent", result)
return result
except Exception as e:
self.logger.error(f"Error in text analysis: {str(e)}")
# Signal completion with error
self.synchronizer.signal_completion(
"text_analysis_agent",
f"analyze_text_{workflow_id}",
{"error": str(e)}
)
# Arrive at barrier with error
self.synchronizer.arrive_at_barrier(
analysis_barrier_id,
"text_analysis_agent",
{"error": str(e)}
)
return {"error": str(e)}
# Start in background thread
text_thread = threading.Thread(target=text_analysis_task)
text_thread.daemon = True
text_thread.start()
else:
# If no text analysis, signal completion with empty result
self.synchronizer.signal_completion(
"text_analysis_agent",
f"analyze_text_{workflow_id}",
{"status": "skipped", "reason": "No text files or text analysis agent"}
)
self.synchronizer.arrive_at_barrier(
analysis_barrier_id,
"text_analysis_agent",
{"status": "skipped"}
)
# Start image processing in background
if hasattr(self, "image_processing_agent") and self.image_processing_agent and image_files:
def image_processing_task():
try:
# Process images
result = self.image_processing_agent.process_image_files(topic, image_files)
# Signal completion
self.synchronizer.signal_completion(
"image_processing_agent",
f"process_images_{workflow_id}",
result
)
# Arrive at barrier
self.synchronizer.arrive_at_barrier(analysis_barrier_id, "image_processing_agent", result)
return result
except Exception as e:
self.logger.error(f"Error in image processing: {str(e)}")
# Signal completion with error
self.synchronizer.signal_completion(
"image_processing_agent",
f"process_images_{workflow_id}",
{"error": str(e)}
)
# Arrive at barrier with error
self.synchronizer.arrive_at_barrier(
analysis_barrier_id,
"image_processing_agent",
{"error": str(e)}
)
return {"error": str(e)}
# Start in background thread
image_thread = threading.Thread(target=image_processing_task)
image_thread.daemon = True
image_thread.start()
else:
# If no image processing, signal completion with empty result
self.synchronizer.signal_completion(
"image_processing_agent",
f"process_images_{workflow_id}",
{"status": "skipped", "reason": "No image files or image processing agent"}
)
self.synchronizer.arrive_at_barrier(
analysis_barrier_id,
"image_processing_agent",
{"status": "skipped"}
)
# Wait for analysis to complete
if not self.synchronizer.wait_for_barrier(analysis_barrier_id, timeout=900): # 15 minute timeout
self.logger.error(f"Timeout waiting for analysis to complete")
session["status"] = "error"
return {
"error": "Timeout waiting for analysis to complete",
"status": "timeout",
"workflow_id": workflow_id
}
# Get analysis results
barrier_data = self.synchronizer.get_barrier_data(analysis_barrier_id)
text_analysis = barrier_data.get("text_analysis_agent", {})
image_analysis = barrier_data.get("image_processing_agent", {})
# Add debug logging here
self.logger.info(f"Analysis complete. Text analysis: {bool(text_analysis)}, Image analysis: {bool(image_analysis)}")
# Check if report_generation_agent exists before trying to use it
if not hasattr(self, "report_generation_agent") or not self.report_generation_agent:
self.logger.warning("Report generation agent not available, skipping report generation")
session["status"] = "completed"
return {
"status": "completed",
"workflow_id": workflow_id,
"topic": topic,
"results": {
"text_analysis": text_analysis,
"image_analysis": image_analysis
}
}
# Make sure the report agent is registered with the synchronizer
self.synchronizer.register_agent("report_generation_agent")
# Manually signal arrival for report agent if it's not responding
# This is a fallback in case the report thread is not starting properly
report_thread_started = False
# Check for errors
text_error = "error" in text_analysis
image_error = "error" in image_analysis
if text_error and image_error:
session["status"] = "error"
return {
"error": "Both text and image analysis failed",
"text_error": text_analysis.get("error", "Unknown error"),
"image_error": image_analysis.get("error", "Unknown error"),
"status": "error",
"workflow_id": workflow_id
}
#report_thread_started = False
# Generate report
if hasattr(self, "report_generation_agent") and self.report_generation_agent:
def report_generation_task():
nonlocal report_thread_started
report_thread_started = True
try:
# Wait for dependencies to be met
if not self.synchronizer.are_dependencies_met(
"report_generation_agent", f"generate_report_{workflow_id}"):
self.logger.info("Waiting for dependencies to be met for report generation")
# Generate report
result = self.report_generation_agent.generate_report(
topic, text_analysis, image_analysis)
# Signal completion
self.synchronizer.signal_completion(
"report_generation_agent",
f"generate_report_{workflow_id}",
result
)
# Arrive at barrier
self.synchronizer.arrive_at_barrier(report_barrier_id, "report_generation_agent", result)
return result
except Exception as e:
self.logger.error(f"Error in report generation: {str(e)}")
# Signal completion with error
self.synchronizer.signal_completion(
"report_generation_agent",
f"generate_report_{workflow_id}",
{"error": str(e)}
)
# Arrive at barrier with error
self.synchronizer.arrive_at_barrier(
report_barrier_id,
"report_generation_agent",
{"error": str(e)}
)
return {"error": str(e)}
# Start in background thread
report_thread = threading.Thread(target=report_generation_task)
report_thread.daemon = True
report_thread.start()
start_time = time.time()
while not report_thread_started and time.time() - start_time < 10: # 10 second timeout
time.sleep(0.1)
if not report_thread_started:
self.logger.error("Report generation thread failed to start, manually signaling completion")
# Manually arrive at the barrier
self.synchronizer.arrive_at_barrier(
report_barrier_id,
"report_generation_agent",
{"error": "Report thread failed to start"}
)
self.logger.info(f"Final report data: {report.keys() if report else 'None'}")
self.logger.info("Workflow completed, returning results to UI")
# Wait for report to be ready
if not self.synchronizer.wait_for_barrier(report_barrier_id, timeout=300): # 5 minute timeout
self.logger.error(f"Timeout waiting for report generation")
session["status"] = "error"
return {
"error": "Timeout waiting for report generation",
"status": "timeout",
"workflow_id": workflow_id,
"partial_results": {
"text_analysis": text_analysis,
"image_analysis": image_analysis
}
}
# Get report
barrier_data = self.synchronizer.get_barrier_data(report_barrier_id)
report = barrier_data.get("report_generation_agent", {})
self.logger.info(f"Report barrier data keys: {barrier_data.keys()}")
self.logger.info(f"Report data keys: {report.keys() if isinstance(report, dict) else 'Not a dict'}")
self.logger.info("************************************************")
self.logger.info("************************************************")
self.logger.info("************************************************")
self.logger.info("************************************************")
self.logger.info("************************************************")
self.logger.info("************************************************")
self.logger.info("************************************************")
self.logger.info("Report generation completed, preparing to return results")
self.logger.info(f"Report type: {type(report)}")
self.logger.info(f"Report keys: {report.keys() if isinstance(report, dict) else 'Not a dict'}")
self.logger.info(f"Session status updated to: {session['status']}")
print("WORKFLOW COMPLETED: Results ready to be returned to UI")
self.logger.info("************************************************")
self.logger.info("************************************************")
self.logger.info("************************************************")
self.logger.info("************************************************")
self.logger.info("************************************************")
# Check for errors
if "error" in report:
session["status"] = "error"
return {
"error": "Report generation failed",
"report_error": report.get("error", "Unknown error"),
"status": "error",
"workflow_id": workflow_id,
"partial_results": {
"text_analysis": text_analysis,
"image_analysis": image_analysis
}
}
# Update session status
session["status"] = "completed"
session["last_result"] = report
# Make sure session update is visible to UI
self.active_sessions[session_id] = {
"status": "completed",
"report": report,
"workflow_id": workflow_id,
"topic": topic,
"timestamp": datetime.now().isoformat()
}
# Get sustainability metrics if available
sustainability_metrics = None
if hasattr(self, "metrics_agent") and self.metrics_agent:
try:
sustainability_metrics = self.metrics_agent.generate_sustainability_report()
except Exception as e:
self.logger.error(f"Error getting sustainability metrics: {str(e)}")
session["status"] = "completed"
self.logger.info("========== WORKFLOW COMPLETED ==========")
self.logger.info(f"Returning final result with keys: {list(result.keys()) if isinstance(result, dict) else 'Not a dict'}")
# Return final result
self.logger.info("#####################################################")
self.logger.info("#####################################################")
self.logger.info("#####################################################")
self.logger.info("#####################################################")
self.logger.info("#####################################################")
self.logger.info("#####################################################")
self.logger.info("Returning final result to caller")
print(f"RETURN DATA: status={result.get('status')}, keys={result.keys() if isinstance(result, dict) else 'Not a dict'}")
self.logger.info("#####################################################")
self.logger.info("#####################################################")
self.logger.info("#####################################################")
self.logger.info("#####################################################")
self.logger.info("#####################################################")
return {
"status": "completed",
"workflow_id": workflow_id,
"topic": topic,
"report": report,
"sustainability_metrics": sustainability_metrics
}
else:
# No report generation, return analysis results
session["status"] = "completed"
self.logger.info("========== ERROR WORKFLOW COMPLETED ==========")
self.logger.info("=====================================================")
self.logger.info("=====================================================")
self.logger.info("=====================================================")
self.logger.info("=====================================================")
self.logger.info("=====================================================")
self.logger.info("=====================================================")
self.logger.info("=====================================================")
self.logger.info("Returning final result to caller")
print(f"RETURN DATA: status={result.get('status')}, keys={result.keys() if isinstance(result, dict) else 'Not a dict'}")
self.logger.info("=====================================================")
self.logger.info("=====================================================")
self.logger.info("=====================================================")
self.logger.info("=====================================================")
self.logger.info("=====================================================")
self.logger.info("=====================================================")
self.logger.info("=====================================================")
self.logger.info(f"Returning final result with keys: {list(result.keys()) if isinstance(result, dict) else 'Not a dict'}")
return {
"status": "completed",
"workflow_id": workflow_id,
"topic": topic,
"results": {
"text_analysis": text_analysis,
"image_analysis": image_analysis
}
}
def _register_fallbacks(self):
"""Register fallback functions for critical operations."""
# Fallback for process_request
self.error_handler.register_fallback(
"orchestrator", "process_request",
self._fallback_process_request
)
# Fallback for coordinator workflow execution
self.error_handler.register_fallback(
"coordinator_agent", "execute_workflow",
self._fallback_execute_workflow
)
def _fallback_process_request(self, context):
"""Fallback function for processing requests."""
# Extract what we can from the context
kwargs = context.get("kwargs", {})
topic = kwargs.get("topic", "unknown")
session_id = kwargs.get("session_id", "unknown")
# Check if we have a session
if session_id in self.active_sessions:
session = self.active_sessions[session_id]
session["status"] = "error"
session["error"] = "Request processing failed, using fallback"
return {
"status": "error",
"message": "An error occurred while processing your request. Using simplified processing.",
"topic": topic,
"fallback": True,
"result": {
"confidence_level": "low",
"summary": "Unable to process request fully. Please try again or simplify your query."
}
}
def _fallback_execute_workflow(self, context):
"""Fallback function for workflow execution."""
# We can attempt direct coordination as a fallback
try:
if hasattr(self.coordinator_agent, "_direct_coordination"):
# Extract current topic and files from coordinator agent state
topic = self.coordinator_agent.current_topic
if topic and topic in self.coordinator_agent.workflow_state:
workflow = self.coordinator_agent.workflow_state[topic]
text_files = workflow.get("text_files", [])
image_files = workflow.get("image_files", [])
# Try direct coordination
return self.coordinator_agent._direct_coordination(topic, text_files, image_files)
# If we can't do direct coordination, return a basic error response
return {
"status": "error",
"message": "Workflow execution failed. Using fallback.",
"fallback": True
}
except Exception as e:
self.logger.error(f"Fallback for execute_workflow also failed: {str(e)}")
return {
"status": "critical_error",
"message": "Both primary and fallback execution failed."
}
#@with_error_handling("orchestrator", "create_session", lambda self: self.error_handler)
@with_error_handling("orchestrator", "create_session")
def create_session(self) -> str:
"""Create a new session and return session ID."""
session_id = f"session_{int(time.time())}_{self.session_counter}"
self.session_counter += 1
self.active_sessions[session_id] = {
"created_at": datetime.now().isoformat(),
"status": "initialized",
"workflows": [],
"current_workflow": None
}
self.logger.info(f"Created new session: {session_id}")
return session_id
#@with_error_handling("orchestrator", "process_request", lambda self: self.error_handler)
@with_error_handling("orchestrator", "process_request")
def process_request(self, session_id: str, topic: str, text_files: List[str],
image_files: List[str]) -> Dict[str, Any]:
"""
Process a user request within a session.
Coordinates the workflow through the coordinator agent.
"""
if session_id not in self.active_sessions:
return {"error": f"Session {session_id} not found. Please create a new session."}
session = self.active_sessions[session_id]
session["status"] = "processing"
# Initialize workflow via coordinator
workflow_result = self.coordinator_agent.initialize_workflow(topic, text_files, image_files)
# Store workflow ID in session
workflow_id = workflow_result.get("workflow_id")
if workflow_id:
session["workflows"].append(workflow_id)
session["current_workflow"] = workflow_id
# Execute workflow with error handling
try:
# Try to execute with error handling
result = self._execute_workflow_with_error_handling()
except Exception as e:
# If that fails, try direct execution as a last resort
self.logger.error(f"Error executing workflow with error handling: {str(e)}")
result = self.coordinator_agent.execute_workflow()
# Update session status
session["status"] = "completed" if not result.get("error") else "error"
session["last_result"] = result
self.logger.info(f"Process request completed. Session status: {session['status']}")
self.logger.info(f"Active sessions: {list(self.active_sessions.keys())}")
#return result
return result
def _execute_workflow_with_error_handling(self) -> Dict[str, Any]:
"""Execute workflow with error handling."""
try:
result = self.coordinator_agent.execute_workflow()
self.error_handler.record_success("coordinator_agent", "execute_workflow")
return result
except Exception as e:
# Create context
context = {
"orchestrator": self,
"coordinator_agent": self.coordinator_agent
}
# Handle the error
handled, fallback_result = self.error_handler.handle_error(
"coordinator_agent", "execute_workflow", e, context)
if handled:
return fallback_result
else:
# Re-raise the exception if not handled
raise
#@with_error_handling("orchestrator", "get_session_status", lambda self: self.error_handler)
@with_error_handling("orchestrator", "get_session_status")
def get_session_status(self, session_id: str) -> Dict[str, Any]:
"""Get the status of a session."""
if session_id not in self.active_sessions:
return {"error": f"Session {session_id} not found"}
session = self.active_sessions[session_id]
# If there's an active workflow, get its status
if session.get("current_workflow"):
try:
workflow_status = self.coordinator_agent.get_workflow_status(
session["current_workflow"])
return {
"session_id": session_id,
"status": session["status"],
"created_at": session["created_at"],
"workflows": session["workflows"],
"current_workflow": session["current_workflow"],
"workflow_status": workflow_status
}
except Exception as e:
# If getting workflow status fails, return basic session info
self.logger.error(f"Error getting workflow status: {str(e)}")
return {
"session_id": session_id,
"status": session["status"],
"created_at": session["created_at"],
"workflows": session["workflows"],
"error": "Failed to retrieve detailed workflow status"
}
else:
return {
"session_id": session_id,
"status": session["status"],
"created_at": session["created_at"],
"workflows": session["workflows"]
}
#@with_error_handling("orchestrator", "cleanup_session", lambda self: self.error_handler)
@with_error_handling("orchestrator", "cleanup_session")
def cleanup_session(self, session_id: str) -> Dict[str, Any]:
"""Clean up resources for a session."""
if session_id not in self.active_sessions:
return {"error": f"Session {session_id} not found"}
session = self.active_sessions[session_id]
# Clean up any active workflows
if session.get("current_workflow"):
try:
self.coordinator_agent.cleanup_workflow(session["current_workflow"])
except Exception as e:
self.logger.error(f"Error cleaning up workflow: {str(e)}")
# Continue with session cleanup even if workflow cleanup fails
# Mark session as cleaned up
session["status"] = "cleaned_up"
return {
"session_id": session_id,
"status": "cleaned_up",
"message": "Session resources have been cleaned up"
}
#@with_error_handling("orchestrator", "get_sustainability_metrics", lambda self: self.error_handler)
@with_error_handling("orchestrator", "get_sustainability_metrics")
def get_sustainability_metrics(self, session_id: Optional[str] = None) -> Dict[str, Any]:
"""
Get sustainability metrics for a session or the entire system.
If session_id is provided, returns metrics for that session only.
"""
if not self.metrics_calculator:
return {"error": "Metrics calculator not available"}
if session_id:
# TODO: Implement session-specific metrics
# For now, return global metrics
return self.metrics_calculator.get_all_metrics()
else:
# Return global metrics
return self.metrics_calculator.get_all_metrics()
def get_error_report(self) -> Dict[str, Any]:
"""Get error report from the error handler."""
if not self.error_handler:
return {"error": "Error handler not available"}
return self.error_handler.get_error_report()
|