Spaces:
Sleeping
Sleeping
File size: 19,237 Bytes
7de43ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
# agents/metrics_agent.py
import logging
import time
from typing import Dict, List, Optional, Tuple, Union, Any
import json
import matplotlib.pyplot as plt
import io
import base64
from datetime import datetime, timedelta
class MetricsAgent:
def __init__(self, metrics_calculator, token_manager=None, cache_manager=None):
"""Initialize the MetricsAgent with required utilities."""
self.logger = logging.getLogger(__name__)
self.metrics_calculator = metrics_calculator
self.token_manager = token_manager
self.cache_manager = cache_manager
# Track start time
self.start_time = datetime.now()
# Store historical metrics for trend analysis
self.metrics_history = []
self.history_interval = 10 # seconds between history points
self.last_history_time = self.start_time
# Agent name for logging
self.agent_name = "metrics_agent"
def track_agent_performance(self) -> Dict[str, Any]:
"""
Track and report performance metrics for all agents.
Returns a comprehensive metrics report.
"""
if not self.metrics_calculator:
return {"error": "No metrics calculator available"}
# Get all metrics from calculator
all_metrics = self.metrics_calculator.get_all_metrics()
# Add additional derived metrics
derived_metrics = self._calculate_derived_metrics(all_metrics)
all_metrics["derived_metrics"] = derived_metrics
# Add timestamp
all_metrics["timestamp"] = datetime.now().isoformat()
all_metrics["elapsed_time"] = (datetime.now() - self.start_time).total_seconds()
# Add to history if enough time has passed
if (datetime.now() - self.last_history_time).total_seconds() >= self.history_interval:
self.metrics_history.append(all_metrics)
self.last_history_time = datetime.now()
return all_metrics
def _calculate_derived_metrics(self, metrics: Dict[str, Any]) -> Dict[str, Any]:
"""Calculate additional derived metrics from raw metrics."""
derived = {}
# Calculate energy efficiency
if metrics.get("token_metrics", {}).get("total_tokens", 0) > 0:
energy_total = metrics.get("energy_usage", {}).get("total", 0.001)
tokens_total = metrics.get("token_metrics", {}).get("total_tokens", 0)
derived["energy_per_token"] = energy_total / tokens_total
derived["tokens_per_watt_hour"] = tokens_total / energy_total
# Calculate optimization effectiveness
if metrics.get("optimization_gains", {}):
opt_gains = metrics.get("optimization_gains", {})
total_energy = metrics.get("energy_usage", {}).get("total", 0)
if total_energy > 0:
energy_saved = opt_gains.get("total_energy_saved", 0)
derived["optimization_effectiveness"] = energy_saved / (total_energy + energy_saved)
# Breakdown by optimization type
derived["optimization_breakdown"] = {
"caching": opt_gains.get("cache_energy_saved", 0),
"model_selection": opt_gains.get("model_selection_energy_saved", 0)
}
# Calculate cache effectiveness
if self.cache_manager:
cache_stats = self.cache_manager.get_stats()
derived["cache_effectiveness"] = {
"hit_rate": cache_stats.get("hit_rate", 0),
"memory_efficiency": cache_stats.get("current_size", 0) / max(cache_stats.get("max_size", 1), 1)
}
return derived
def generate_sustainability_report(self) -> Dict[str, Any]:
"""
Generate a comprehensive sustainability report.
Includes environmental impact metrics and recommendations.
"""
# Get current metrics
metrics = self.track_agent_performance()
# Calculate key sustainability indicators
carbon_footprint = metrics.get("carbon_footprint_kg", 0)
energy_usage = metrics.get("energy_usage", {}).get("total", 0)
optimization_gains = metrics.get("optimization_gains", {})
# Generate environmental equivalents
env_equivalents = metrics.get("environmental_equivalents", {})
# Calculate potential future savings
potential_savings = self._calculate_potential_savings(metrics)
# Generate recommendations
recommendations = self._generate_optimization_recommendations(metrics)
# Prepare report
report = {
"timestamp": datetime.now().isoformat(),
"runtime_seconds": metrics.get("runtime_seconds", 0),
"sustainability_metrics": {
"energy_usage_wh": energy_usage,
"carbon_footprint_kg": carbon_footprint,
"environmental_equivalents": env_equivalents
},
"optimization_results": {
"energy_saved_wh": optimization_gains.get("total_energy_saved", 0),
"tokens_saved": optimization_gains.get("tokens_saved", 0),
"tokens_saved_percent": optimization_gains.get("tokens_saved_pct", 0)
},
"potential_future_savings": potential_savings,
"recommendations": recommendations
}
return report
def _calculate_potential_savings(self, metrics: Dict[str, Any]) -> Dict[str, Any]:
"""Calculate potential future energy savings based on current patterns."""
# Get current optimization effectiveness
derived = metrics.get("derived_metrics", {})
current_effectiveness = derived.get("optimization_effectiveness", 0)
# Calculate potential improvements
cache_hit_rate = derived.get("cache_effectiveness", {}).get("hit_rate", 0)
potential_hit_rate = min(cache_hit_rate + 0.2, 0.95) # Assume we can improve hit rate by up to 20%
# Calculate energy that could be saved with improved caching
energy_usage = metrics.get("energy_usage", {}).get("total", 0)
potential_cache_savings = energy_usage * 0.3 * (potential_hit_rate - cache_hit_rate) / max(cache_hit_rate, 0.01)
# Calculate potential model selection improvements
model_selection_current = derived.get("optimization_breakdown", {}).get("model_selection", 0)
potential_model_selection = model_selection_current * 1.5 # Assume 50% improvement
return {
"improved_caching_wh": potential_cache_savings,
"improved_model_selection_wh": potential_model_selection - model_selection_current,
"total_potential_wh": potential_cache_savings + (potential_model_selection - model_selection_current),
"percent_improvement": (potential_cache_savings + (potential_model_selection - model_selection_current)) / max(energy_usage, 0.001) * 100
}
def _generate_optimization_recommendations(self, metrics: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Generate actionable recommendations for improving efficiency."""
recommendations = []
# Check token usage by model
token_metrics = metrics.get("token_metrics", {})
by_model = token_metrics.get("by_model", {})
# Find the most token-heavy model
if by_model:
heaviest_model = max(by_model.items(), key=lambda x: x[1])
if heaviest_model[1] > 1000:
recommendations.append({
"type": "token_optimization",
"target": heaviest_model[0],
"description": f"Optimize prompts for {heaviest_model[0]} to reduce token usage",
"potential_impact": "Medium"
})
# Check cache effectiveness
derived = metrics.get("derived_metrics", {})
cache_effectiveness = derived.get("cache_effectiveness", {})
if cache_effectiveness.get("hit_rate", 1) < 0.5:
recommendations.append({
"type": "cache_optimization",
"description": "Increase cache size or improve cache key generation for better hit rates",
"potential_impact": "High"
})
# Check model selection
model_selection = derived.get("optimization_breakdown", {}).get("model_selection", 0)
energy_usage = metrics.get("energy_usage", {}).get("total", 0)
if model_selection < 0.1 * energy_usage:
recommendations.append({
"type": "model_selection",
"description": "Refine complexity detection to use smaller models more frequently",
"potential_impact": "High"
})
return recommendations
def generate_metrics_dashboard(self, format: str = "json") -> Dict[str, Any]:
"""
Generate a visual or structured representation of system metrics.
Returns data in the specified format (json, html, image_base64).
"""
# Get current metrics
metrics = self.track_agent_performance()
if format == "json":
return metrics
elif format == "image_base64":
# Generate visualization
img_data = self._generate_dashboard_visualization(metrics)
return {
"format": "image_base64",
"data": img_data,
"timestamp": datetime.now().isoformat()
}
elif format == "html":
# Generate HTML representation
html_data = self._generate_html_dashboard(metrics)
return {
"format": "html",
"data": html_data,
"timestamp": datetime.now().isoformat()
}
else:
return {"error": f"Unsupported format: {format}"}
def _generate_dashboard_visualization(self, metrics: Dict[str, Any]) -> str:
"""Generate a visualization of metrics and return as base64 image."""
# Create figure with subplots
fig, axs = plt.subplots(2, 2, figsize=(12, 10))
# 1. Energy Usage by Model
energy_by_model = metrics.get("energy_usage", {}).get("by_model", {})
if energy_by_model:
models = list(energy_by_model.keys())
energy_values = list(energy_by_model.values())
axs[0, 0].bar(models, energy_values)
axs[0, 0].set_title('Energy Usage by Model')
axs[0, 0].set_ylabel('Watt-hours')
axs[0, 0].tick_params(axis='x', rotation=45)
# 2. Token Usage by Agent
token_by_agent = metrics.get("token_metrics", {}).get("by_agent", {})
if token_by_agent:
agents = list(token_by_agent.keys())
token_values = list(token_by_agent.values())
axs[0, 1].bar(agents, token_values)
axs[0, 1].set_title('Token Usage by Agent')
axs[0, 1].set_ylabel('Tokens')
axs[0, 1].tick_params(axis='x', rotation=45)
# 3. Optimization Gains
opt_gains = metrics.get("optimization_gains", {})
if opt_gains:
gain_types = ['Tokens Saved', 'Cache Energy Saved', 'Model Selection Energy Saved']
gain_values = [
opt_gains.get("tokens_saved", 0) / 100, # Scale down for visualization
opt_gains.get("cache_energy_saved", 0),
opt_gains.get("model_selection_energy_saved", 0)
]
axs[1, 0].bar(gain_types, gain_values)
axs[1, 0].set_title('Optimization Gains')
axs[1, 0].set_ylabel('Value')
axs[1, 0].tick_params(axis='x', rotation=45)
# 4. Environmental Impact
env_equiv = metrics.get("environmental_equivalents", {})
if env_equiv:
impact_types = list(env_equiv.keys())
impact_values = list(env_equiv.values())
axs[1, 1].bar(impact_types, impact_values)
axs[1, 1].set_title('Environmental Equivalents')
axs[1, 1].set_ylabel('Value')
axs[1, 1].tick_params(axis='x', rotation=45)
# Adjust layout and convert to base64
plt.tight_layout()
# Save to bytes buffer
buffer = io.BytesIO()
plt.savefig(buffer, format='png')
buffer.seek(0)
# Convert to base64
img_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
# Close plot to free memory
plt.close(fig)
return img_str
def _generate_html_dashboard(self, metrics: Dict[str, Any]) -> str:
"""Generate an HTML representation of the metrics dashboard."""
# Simple HTML template
html_template = """
<!DOCTYPE html>
<html>
<head>
<title>Sustainability Metrics Dashboard</title>
<style>
body { font-family: Arial, sans-serif; margin: 20px; }
.dashboard { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; }
.card { border: 1px solid #ddd; border-radius: 5px; padding: 15px; }
.card h2 { margin-top: 0; color: #333; }
.metric { margin: 10px 0; }
.metric-name { font-weight: bold; }
.metric-value { float: right; }
.highlight { color: #2a6496; font-weight: bold; }
.recommendations { grid-column: span 2; }
</style>
</head>
<body>
<h1>Sustainability Metrics Dashboard</h1>
<p>Generated on: {timestamp}</p>
<div class="dashboard">
<div class="card">
<h2>Energy Usage</h2>
{energy_metrics}
</div>
<div class="card">
<h2>Token Usage</h2>
{token_metrics}
</div>
<div class="card">
<h2>Optimization Gains</h2>
{optimization_metrics}
</div>
<div class="card">
<h2>Environmental Impact</h2>
{environmental_metrics}
</div>
<div class="card recommendations">
<h2>Recommendations</h2>
{recommendations}
</div>
</div>
</body>
</html>
"""
# Generate energy metrics HTML
energy_usage = metrics.get("energy_usage", {})
energy_metrics_html = ""
if energy_usage:
energy_metrics_html += self._format_metric("Total Energy", f"{energy_usage.get('total', 0):.6f} Wh")
energy_metrics_html += "<h3>By Model</h3>"
for model, usage in energy_usage.get("by_model", {}).items():
energy_metrics_html += self._format_metric(model, f"{usage:.6f} Wh")
# Generate token metrics HTML
token_metrics = metrics.get("token_metrics", {})
token_metrics_html = ""
if token_metrics:
token_metrics_html += self._format_metric("Total Tokens", token_metrics.get("total_tokens", 0))
token_metrics_html += self._format_metric("Tokens Saved", token_metrics.get("tokens_saved", 0))
token_metrics_html += "<h3>By Agent</h3>"
for agent, tokens in token_metrics.get("by_agent", {}).items():
token_metrics_html += self._format_metric(agent, tokens)
# Generate optimization metrics HTML
opt_gains = metrics.get("optimization_gains", {})
optimization_metrics_html = ""
if opt_gains:
optimization_metrics_html += self._format_metric("Tokens Saved", opt_gains.get("tokens_saved", 0))
optimization_metrics_html += self._format_metric("Tokens Saved %", f"{opt_gains.get('tokens_saved_pct', 0):.2f}%")
optimization_metrics_html += self._format_metric("Cache Energy Saved", f"{opt_gains.get('cache_energy_saved', 0):.6f} Wh")
optimization_metrics_html += self._format_metric("Model Selection Saved", f"{opt_gains.get('model_selection_energy_saved', 0):.6f} Wh")
optimization_metrics_html += self._format_metric("Total Energy Saved", f"{opt_gains.get('total_energy_saved', 0):.6f} Wh", highlight=True)
# Generate environmental metrics HTML
env_equiv = metrics.get("environmental_equivalents", {})
environmental_metrics_html = ""
if env_equiv:
environmental_metrics_html += self._format_metric("Carbon Footprint", f"{metrics.get('carbon_footprint_kg', 0):.6f} kg CO₂")
environmental_metrics_html += "<h3>Equivalents</h3>"
for impact_type, value in env_equiv.items():
label = impact_type.replace('_', ' ').title()
environmental_metrics_html += self._format_metric(label, f"{value:.2f}")
# Generate recommendations HTML
recommendations = metrics.get("recommendations", [])
recommendations_html = "<ul>"
if recommendations:
for rec in recommendations:
impact = rec.get("potential_impact", "")
impact_class = "highlight" if impact == "High" else ""
recommendations_html += f"<li><span class='{impact_class}'>{rec.get('description', '')}</span> (Impact: {impact})</li>"
else:
recommendations_html += "<li>No recommendations available</li>"
recommendations_html += "</ul>"
# Format final HTML
html = html_template.format(
timestamp=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
energy_metrics=energy_metrics_html,
token_metrics=token_metrics_html,
optimization_metrics=optimization_metrics_html,
environmental_metrics=environmental_metrics_html,
recommendations=recommendations_html
)
return html
def _format_metric(self, name: str, value: Any, highlight: bool = False) -> str:
"""Helper method to format a metric as HTML."""
highlight_class = "highlight" if highlight else ""
return f"<div class='metric'><span class='metric-name'>{name}:</span> <span class='metric-value {highlight_class}'>{value}</span></div>"
|