File size: 19,237 Bytes
7de43ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# agents/metrics_agent.py
import logging
import time
from typing import Dict, List, Optional, Tuple, Union, Any
import json
import matplotlib.pyplot as plt
import io
import base64
from datetime import datetime, timedelta

class MetricsAgent:
    def __init__(self, metrics_calculator, token_manager=None, cache_manager=None):
        """Initialize the MetricsAgent with required utilities."""
        self.logger = logging.getLogger(__name__)
        self.metrics_calculator = metrics_calculator
        self.token_manager = token_manager
        self.cache_manager = cache_manager
        
        # Track start time
        self.start_time = datetime.now()
        
        # Store historical metrics for trend analysis
        self.metrics_history = []
        self.history_interval = 10  # seconds between history points
        self.last_history_time = self.start_time
        
        # Agent name for logging
        self.agent_name = "metrics_agent"
        
    def track_agent_performance(self) -> Dict[str, Any]:
        """

        Track and report performance metrics for all agents.

        Returns a comprehensive metrics report.

        """
        if not self.metrics_calculator:
            return {"error": "No metrics calculator available"}
            
        # Get all metrics from calculator
        all_metrics = self.metrics_calculator.get_all_metrics()
        
        # Add additional derived metrics
        derived_metrics = self._calculate_derived_metrics(all_metrics)
        all_metrics["derived_metrics"] = derived_metrics
        
        # Add timestamp
        all_metrics["timestamp"] = datetime.now().isoformat()
        all_metrics["elapsed_time"] = (datetime.now() - self.start_time).total_seconds()
        
        # Add to history if enough time has passed
        if (datetime.now() - self.last_history_time).total_seconds() >= self.history_interval:
            self.metrics_history.append(all_metrics)
            self.last_history_time = datetime.now()
        
        return all_metrics
    
    def _calculate_derived_metrics(self, metrics: Dict[str, Any]) -> Dict[str, Any]:
        """Calculate additional derived metrics from raw metrics."""
        derived = {}
        
        # Calculate energy efficiency
        if metrics.get("token_metrics", {}).get("total_tokens", 0) > 0:
            energy_total = metrics.get("energy_usage", {}).get("total", 0.001)
            tokens_total = metrics.get("token_metrics", {}).get("total_tokens", 0)
            
            derived["energy_per_token"] = energy_total / tokens_total
            derived["tokens_per_watt_hour"] = tokens_total / energy_total
        
        # Calculate optimization effectiveness
        if metrics.get("optimization_gains", {}):
            opt_gains = metrics.get("optimization_gains", {})
            total_energy = metrics.get("energy_usage", {}).get("total", 0)
            
            if total_energy > 0:
                energy_saved = opt_gains.get("total_energy_saved", 0)
                derived["optimization_effectiveness"] = energy_saved / (total_energy + energy_saved)
            
            # Breakdown by optimization type
            derived["optimization_breakdown"] = {
                "caching": opt_gains.get("cache_energy_saved", 0),
                "model_selection": opt_gains.get("model_selection_energy_saved", 0)
            }
        
        # Calculate cache effectiveness
        if self.cache_manager:
            cache_stats = self.cache_manager.get_stats()
            derived["cache_effectiveness"] = {
                "hit_rate": cache_stats.get("hit_rate", 0),
                "memory_efficiency": cache_stats.get("current_size", 0) / max(cache_stats.get("max_size", 1), 1)
            }
        
        return derived
    
    def generate_sustainability_report(self) -> Dict[str, Any]:
        """

        Generate a comprehensive sustainability report.

        Includes environmental impact metrics and recommendations.

        """
        # Get current metrics
        metrics = self.track_agent_performance()
        
        # Calculate key sustainability indicators
        carbon_footprint = metrics.get("carbon_footprint_kg", 0)
        energy_usage = metrics.get("energy_usage", {}).get("total", 0)
        optimization_gains = metrics.get("optimization_gains", {})
        
        # Generate environmental equivalents
        env_equivalents = metrics.get("environmental_equivalents", {})
        
        # Calculate potential future savings
        potential_savings = self._calculate_potential_savings(metrics)
        
        # Generate recommendations
        recommendations = self._generate_optimization_recommendations(metrics)
        
        # Prepare report
        report = {
            "timestamp": datetime.now().isoformat(),
            "runtime_seconds": metrics.get("runtime_seconds", 0),
            "sustainability_metrics": {
                "energy_usage_wh": energy_usage,
                "carbon_footprint_kg": carbon_footprint,
                "environmental_equivalents": env_equivalents
            },
            "optimization_results": {
                "energy_saved_wh": optimization_gains.get("total_energy_saved", 0),
                "tokens_saved": optimization_gains.get("tokens_saved", 0),
                "tokens_saved_percent": optimization_gains.get("tokens_saved_pct", 0)
            },
            "potential_future_savings": potential_savings,
            "recommendations": recommendations
        }
        
        return report
    
    def _calculate_potential_savings(self, metrics: Dict[str, Any]) -> Dict[str, Any]:
        """Calculate potential future energy savings based on current patterns."""
        # Get current optimization effectiveness
        derived = metrics.get("derived_metrics", {})
        current_effectiveness = derived.get("optimization_effectiveness", 0)
        
        # Calculate potential improvements
        cache_hit_rate = derived.get("cache_effectiveness", {}).get("hit_rate", 0)
        potential_hit_rate = min(cache_hit_rate + 0.2, 0.95)  # Assume we can improve hit rate by up to 20%
        
        # Calculate energy that could be saved with improved caching
        energy_usage = metrics.get("energy_usage", {}).get("total", 0)
        potential_cache_savings = energy_usage * 0.3 * (potential_hit_rate - cache_hit_rate) / max(cache_hit_rate, 0.01)
        
        # Calculate potential model selection improvements
        model_selection_current = derived.get("optimization_breakdown", {}).get("model_selection", 0)
        potential_model_selection = model_selection_current * 1.5  # Assume 50% improvement
        
        return {
            "improved_caching_wh": potential_cache_savings,
            "improved_model_selection_wh": potential_model_selection - model_selection_current,
            "total_potential_wh": potential_cache_savings + (potential_model_selection - model_selection_current),
            "percent_improvement": (potential_cache_savings + (potential_model_selection - model_selection_current)) / max(energy_usage, 0.001) * 100
        }
    
    def _generate_optimization_recommendations(self, metrics: Dict[str, Any]) -> List[Dict[str, Any]]:
        """Generate actionable recommendations for improving efficiency."""
        recommendations = []
        
        # Check token usage by model
        token_metrics = metrics.get("token_metrics", {})
        by_model = token_metrics.get("by_model", {})
        
        # Find the most token-heavy model
        if by_model:
            heaviest_model = max(by_model.items(), key=lambda x: x[1])
            if heaviest_model[1] > 1000:
                recommendations.append({
                    "type": "token_optimization",
                    "target": heaviest_model[0],
                    "description": f"Optimize prompts for {heaviest_model[0]} to reduce token usage",
                    "potential_impact": "Medium"
                })
        
        # Check cache effectiveness
        derived = metrics.get("derived_metrics", {})
        cache_effectiveness = derived.get("cache_effectiveness", {})
        
        if cache_effectiveness.get("hit_rate", 1) < 0.5:
            recommendations.append({
                "type": "cache_optimization",
                "description": "Increase cache size or improve cache key generation for better hit rates",
                "potential_impact": "High"
            })
        
        # Check model selection
        model_selection = derived.get("optimization_breakdown", {}).get("model_selection", 0)
        energy_usage = metrics.get("energy_usage", {}).get("total", 0)
        
        if model_selection < 0.1 * energy_usage:
            recommendations.append({
                "type": "model_selection",
                "description": "Refine complexity detection to use smaller models more frequently",
                "potential_impact": "High"
            })
        
        return recommendations
    
    def generate_metrics_dashboard(self, format: str = "json") -> Dict[str, Any]:
        """

        Generate a visual or structured representation of system metrics.

        Returns data in the specified format (json, html, image_base64).

        """
        # Get current metrics
        metrics = self.track_agent_performance()
        
        if format == "json":
            return metrics
        
        elif format == "image_base64":
            # Generate visualization
            img_data = self._generate_dashboard_visualization(metrics)
            return {
                "format": "image_base64",
                "data": img_data,
                "timestamp": datetime.now().isoformat()
            }
        
        elif format == "html":
            # Generate HTML representation
            html_data = self._generate_html_dashboard(metrics)
            return {
                "format": "html",
                "data": html_data,
                "timestamp": datetime.now().isoformat()
            }
        
        else:
            return {"error": f"Unsupported format: {format}"}
    
    def _generate_dashboard_visualization(self, metrics: Dict[str, Any]) -> str:
        """Generate a visualization of metrics and return as base64 image."""
        # Create figure with subplots
        fig, axs = plt.subplots(2, 2, figsize=(12, 10))
        
        # 1. Energy Usage by Model
        energy_by_model = metrics.get("energy_usage", {}).get("by_model", {})
        if energy_by_model:
            models = list(energy_by_model.keys())
            energy_values = list(energy_by_model.values())
            
            axs[0, 0].bar(models, energy_values)
            axs[0, 0].set_title('Energy Usage by Model')
            axs[0, 0].set_ylabel('Watt-hours')
            axs[0, 0].tick_params(axis='x', rotation=45)
        
        # 2. Token Usage by Agent
        token_by_agent = metrics.get("token_metrics", {}).get("by_agent", {})
        if token_by_agent:
            agents = list(token_by_agent.keys())
            token_values = list(token_by_agent.values())
            
            axs[0, 1].bar(agents, token_values)
            axs[0, 1].set_title('Token Usage by Agent')
            axs[0, 1].set_ylabel('Tokens')
            axs[0, 1].tick_params(axis='x', rotation=45)
        
        # 3. Optimization Gains
        opt_gains = metrics.get("optimization_gains", {})
        if opt_gains:
            gain_types = ['Tokens Saved', 'Cache Energy Saved', 'Model Selection Energy Saved']
            gain_values = [
                opt_gains.get("tokens_saved", 0) / 100,  # Scale down for visualization
                opt_gains.get("cache_energy_saved", 0),
                opt_gains.get("model_selection_energy_saved", 0)
            ]
            
            axs[1, 0].bar(gain_types, gain_values)
            axs[1, 0].set_title('Optimization Gains')
            axs[1, 0].set_ylabel('Value')
            axs[1, 0].tick_params(axis='x', rotation=45)
        
        # 4. Environmental Impact
        env_equiv = metrics.get("environmental_equivalents", {})
        if env_equiv:
            impact_types = list(env_equiv.keys())
            impact_values = list(env_equiv.values())
            
            axs[1, 1].bar(impact_types, impact_values)
            axs[1, 1].set_title('Environmental Equivalents')
            axs[1, 1].set_ylabel('Value')
            axs[1, 1].tick_params(axis='x', rotation=45)
        
        # Adjust layout and convert to base64
        plt.tight_layout()
        
        # Save to bytes buffer
        buffer = io.BytesIO()
        plt.savefig(buffer, format='png')
        buffer.seek(0)
        
        # Convert to base64
        img_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
        
        # Close plot to free memory
        plt.close(fig)
        
        return img_str
    
    def _generate_html_dashboard(self, metrics: Dict[str, Any]) -> str:
        """Generate an HTML representation of the metrics dashboard."""
        # Simple HTML template
        html_template = """

        <!DOCTYPE html>

        <html>

        <head>

            <title>Sustainability Metrics Dashboard</title>

            <style>

                body { font-family: Arial, sans-serif; margin: 20px; }

                .dashboard { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; }

                .card { border: 1px solid #ddd; border-radius: 5px; padding: 15px; }

                .card h2 { margin-top: 0; color: #333; }

                .metric { margin: 10px 0; }

                .metric-name { font-weight: bold; }

                .metric-value { float: right; }

                .highlight { color: #2a6496; font-weight: bold; }

                .recommendations { grid-column: span 2; }

            </style>

        </head>

        <body>

            <h1>Sustainability Metrics Dashboard</h1>

            <p>Generated on: {timestamp}</p>

            

            <div class="dashboard">

                <div class="card">

                    <h2>Energy Usage</h2>

                    {energy_metrics}

                </div>

                

                <div class="card">

                    <h2>Token Usage</h2>

                    {token_metrics}

                </div>

                

                <div class="card">

                    <h2>Optimization Gains</h2>

                    {optimization_metrics}

                </div>

                

                <div class="card">

                    <h2>Environmental Impact</h2>

                    {environmental_metrics}

                </div>

                

                <div class="card recommendations">

                    <h2>Recommendations</h2>

                    {recommendations}

                </div>

            </div>

        </body>

        </html>

        """
        
        # Generate energy metrics HTML
        energy_usage = metrics.get("energy_usage", {})
        energy_metrics_html = ""
        if energy_usage:
            energy_metrics_html += self._format_metric("Total Energy", f"{energy_usage.get('total', 0):.6f} Wh")
            energy_metrics_html += "<h3>By Model</h3>"
            for model, usage in energy_usage.get("by_model", {}).items():
                energy_metrics_html += self._format_metric(model, f"{usage:.6f} Wh")
        
        # Generate token metrics HTML
        token_metrics = metrics.get("token_metrics", {})
        token_metrics_html = ""
        if token_metrics:
            token_metrics_html += self._format_metric("Total Tokens", token_metrics.get("total_tokens", 0))
            token_metrics_html += self._format_metric("Tokens Saved", token_metrics.get("tokens_saved", 0))
            token_metrics_html += "<h3>By Agent</h3>"
            for agent, tokens in token_metrics.get("by_agent", {}).items():
                token_metrics_html += self._format_metric(agent, tokens)
        
        # Generate optimization metrics HTML
        opt_gains = metrics.get("optimization_gains", {})
        optimization_metrics_html = ""
        if opt_gains:
            optimization_metrics_html += self._format_metric("Tokens Saved", opt_gains.get("tokens_saved", 0))
            optimization_metrics_html += self._format_metric("Tokens Saved %", f"{opt_gains.get('tokens_saved_pct', 0):.2f}%")
            optimization_metrics_html += self._format_metric("Cache Energy Saved", f"{opt_gains.get('cache_energy_saved', 0):.6f} Wh")
            optimization_metrics_html += self._format_metric("Model Selection Saved", f"{opt_gains.get('model_selection_energy_saved', 0):.6f} Wh")
            optimization_metrics_html += self._format_metric("Total Energy Saved", f"{opt_gains.get('total_energy_saved', 0):.6f} Wh", highlight=True)
        
        # Generate environmental metrics HTML
        env_equiv = metrics.get("environmental_equivalents", {})
        environmental_metrics_html = ""
        if env_equiv:
            environmental_metrics_html += self._format_metric("Carbon Footprint", f"{metrics.get('carbon_footprint_kg', 0):.6f} kg CO₂")
            environmental_metrics_html += "<h3>Equivalents</h3>"
            for impact_type, value in env_equiv.items():
                label = impact_type.replace('_', ' ').title()
                environmental_metrics_html += self._format_metric(label, f"{value:.2f}")
        
        # Generate recommendations HTML
        recommendations = metrics.get("recommendations", [])
        recommendations_html = "<ul>"
        if recommendations:
            for rec in recommendations:
                impact = rec.get("potential_impact", "")
                impact_class = "highlight" if impact == "High" else ""
                recommendations_html += f"<li><span class='{impact_class}'>{rec.get('description', '')}</span> (Impact: {impact})</li>"
        else:
            recommendations_html += "<li>No recommendations available</li>"
        recommendations_html += "</ul>"
        
        # Format final HTML
        html = html_template.format(
            timestamp=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            energy_metrics=energy_metrics_html,
            token_metrics=token_metrics_html,
            optimization_metrics=optimization_metrics_html,
            environmental_metrics=environmental_metrics_html,
            recommendations=recommendations_html
        )
        
        return html

    def _format_metric(self, name: str, value: Any, highlight: bool = False) -> str:
        """Helper method to format a metric as HTML."""
        highlight_class = "highlight" if highlight else ""
        return f"<div class='metric'><span class='metric-name'>{name}:</span> <span class='metric-value {highlight_class}'>{value}</span></div>"