File size: 26,427 Bytes
59e9e08
 
 
 
 
 
 
 
 
 
 
6c42222
f969bfb
59e9e08
552ba28
15b72ff
f74c0ae
ba4f7ca
59e9e08
 
 
 
 
 
 
 
 
 
 
 
5e50803
 
 
59e9e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e50803
 
 
 
59e9e08
 
 
 
 
987581d
 
 
 
 
 
 
 
 
 
 
 
59e9e08
 
987581d
 
 
 
 
59e9e08
987581d
 
 
 
 
 
 
 
 
 
 
 
 
59e9e08
 
987581d
 
 
59e9e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
987581d
 
 
 
 
 
59e9e08
 
 
987581d
 
 
59e9e08
 
987581d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59e9e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
# agents/coordinator_agent.py
import logging
import os
import time
from typing import Dict, List, Optional, Tuple, Union, Any
from datetime import datetime
import json

# Import latest LangChain packages
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
#from langchain_community.llms import HuggingFaceHub
#from langchain_huggingface import HuggingFaceHub
from langchain_core.tools import Tool, tool
#from langchain_core.agents import create_react_agent
from langchain.agents.agent import AgentExecutor
#from langchain_community.agents import AgentExecutor
from langchain.agents.react.agent import create_react_agent

# Import utility classes
from utils.token_manager import TokenManager
from utils.cache_manager import CacheManager
from utils.metrics_calculator import MetricsCalculator

# Import agent classes for type hints
from agents.text_analysis_agent import TextAnalysisAgent
from agents.image_processing_agent import ImageProcessingAgent
from agents.report_generation_agent import ReportGeneratorAgent
from agents.metrics_agent import MetricsAgent

from langchain_community.llms import HuggingFacePipeline
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline


class CoordinatorAgent:
    def __init__(self, text_analysis_agent=None, image_processing_agent=None, 
                 report_generation_agent=None, metrics_agent=None,
                 token_manager=None, cache_manager=None, metrics_calculator=None):
        """Initialize the CoordinatorAgent with required agents and utilities."""
        self.logger = logging.getLogger(__name__)
        self.text_analysis_agent = text_analysis_agent
        self.image_processing_agent = image_processing_agent
        self.report_generation_agent = report_generation_agent
        self.metrics_agent = metrics_agent
        self.token_manager = token_manager
        self.cache_manager = cache_manager
        self.metrics_calculator = metrics_calculator
        
        # Track workflow states
        self.workflow_state = {}
        self.current_topic = None
        self.workflow_id = None
        
        # Agent name for logging
        self.agent_name = "coordinator_agent"
        
        # Initialize LangChain components
        self._initialize_langchain_components()
        
    def _initialize_langchain_components(self):
        """Initialize LangChain components for coordination."""
        try:
            # Use HuggingFaceHub with a local model that doesn't require API keys
            tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
            model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
            pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_length=1024)
            self.llm = HuggingFacePipeline(pipeline=pipe)
            
            # Define tools for the agent
            self.tools = self._create_tools()
            
            # Create coordination agent prompt
            #self.agent_prompt = self._create_agent_prompt()
            #self.agent_prompt = self._create_agent_prompt()
            self.agent_prompt = PromptTemplate.from_template(
                """You are an efficient workflow coordinator for a multi-agent AI system.
                Your job is to orchestrate the analysis of text files and images related to a user's topic.
                
                Topic: {topic}
                Available Tools: analyze_text_files, process_images, generate_report, get_sustainability_metrics
                
                How would you approach analyzing this topic with the available tools?
                """
            )
            
            # Create the agent
            # self.agent = create_react_agent(
            #     self.llm,
            #     self.tools,
            #     self.agent_prompt
            # )
            
            # # Create agent executor
            # self.agent_executor = AgentExecutor(
            #     agent=self.agent,
            #     tools=self.tools,
            #     verbose=True,
            #     handle_parsing_errors=True,
            #     max_iterations=10
            # )
            # Create a simpler chain instead of a ReAct agent
            self.chain = (
                self.agent_prompt 
                | self.llm 
                | StrOutputParser()
            )
            
            # Set agent_executor to use the chain
            self.agent_executor = self.chain
            
            self.logger.info("LangChain components initialized successfully")
        except Exception as e:
            self.logger.error(f"Failed to initialize LangChain components: {e}")
            # Fallback to direct coordination if LangChain initialization fails
            self.agent_executor = None
    
    def _create_tools(self):
        """Create tools for the LangChain agent."""
        tools = []
        
        # Tool for analyzing text files
        @tool
        def analyze_text_files(topic: str, file_paths: List[str]) -> str:
            """
            Analyze text files for relevance to the specified topic.
            Args:
                topic: The topic to analyze for
                file_paths: List of paths to text files
            Returns:
                Analysis results as a string summary
            """
            if not self.text_analysis_agent:
                return "Text analysis agent not available"
                
            try:
                result = self.text_analysis_agent.process_text_files(topic, file_paths)
                return f"Text analysis completed. Found {result.get('relevant_documents', 0)} relevant documents out of {result.get('total_documents', 0)}."
            except Exception as e:
                return f"Error analyzing text files: {str(e)}"
        
        # Tool for processing images
        @tool
        def process_images(topic: str, file_paths: List[str]) -> str:
            """
            Process images for relevance to the specified topic.
            Args:
                topic: The topic to analyze for
                file_paths: List of paths to image files
            Returns:
                Processing results as a string summary
            """
            if not self.image_processing_agent:
                return "Image processing agent not available"
                
            try:
                result = self.image_processing_agent.process_image_files(topic, file_paths)
                return f"Image processing completed. Found {result.get('relevant_images', 0)} relevant images out of {result.get('total_images', 0)}."
            except Exception as e:
                return f"Error processing images: {str(e)}"
        
        # Tool for generating reports
        @tool
        def generate_report(topic: str) -> str:
            """
            Generate a comprehensive report on the topic based on previous analyses.
            Args:
                topic: The topic of the report
            Returns:
                Report generation status
            """
            if not self.report_generation_agent:
                return "Report generation agent not available"
                
            if topic not in self.workflow_state:
                return f"No analyses found for topic: {topic}"
                
            try:
                text_analysis = self.workflow_state[topic].get("text_analysis")
                image_analysis = self.workflow_state[topic].get("image_analysis")
                
                result = self.report_generation_agent.generate_report(
                    topic, text_analysis, image_analysis)
                
                self.workflow_state[topic]["report"] = result
                
                return f"Report generated successfully with confidence level: {result.get('confidence_level', 'unknown')}"
            except Exception as e:
                return f"Error generating report: {str(e)}"
        
        # Tool for getting sustainability metrics
        @tool
        def get_sustainability_metrics() -> str:
            """
            Get current sustainability metrics for the system.
            Returns:
                Sustainability metrics as a string summary
            """
            if not self.metrics_agent:
                return "Metrics agent not available"
                
            try:
                result = self.metrics_agent.generate_sustainability_report()
                
                energy_usage = result.get("sustainability_metrics", {}).get("energy_usage_wh", 0)
                carbon_footprint = result.get("sustainability_metrics", {}).get("carbon_footprint_kg", 0)
                energy_saved = result.get("optimization_results", {}).get("energy_saved_wh", 0)
                
                return f"Sustainability metrics: Energy used: {energy_usage:.6f} Wh, Carbon footprint: {carbon_footprint:.6f} kg CO2, Energy saved: {energy_saved:.6f} Wh"
            except Exception as e:
                return f"Error getting sustainability metrics: {str(e)}"
        
        # Tool for allocating token budget
        @tool
        def allocate_token_budget(operation_type: str, budget: int) -> str:
            """
            Allocate token budget for a specific operation type.
            Args:
                operation_type: Type of operation (text_analysis, image_captioning, etc.)
                budget: Token budget to allocate
            Returns:
                Allocation status
            """
            if not self.token_manager:
                return "Token manager not available"
                
            try:
                self.token_manager.adjust_budget(operation_type, budget)
                return f"Token budget for {operation_type} adjusted to {budget}"
            except Exception as e:
                return f"Error allocating token budget: {str(e)}"
        
        # Add all tools
        tools.extend([
            analyze_text_files,
            process_images,
            generate_report,
            get_sustainability_metrics,
            allocate_token_budget
        ])
        
        #return tools
        return [{
            "name": tool.name,
            "description": tool.description,
            "func": tool
        } for tool in tools]
    
    def _create_agent_prompt(self):
        """Create the prompt for the coordination agent."""
        # Change this from ChatPromptTemplate to a simpler PromptTemplate
        return PromptTemplate.from_template(
            """You are an efficient workflow coordinator for a multi-agent AI system.
            Your job is to orchestrate the analysis of text files and images related to a user's topic.
            
            Topic: {topic}
            Available Agents: Text Analysis, Image Processing, Report Generation, Metrics
            
            What would you like to do?
            """
        )
        # """Create the prompt for the coordination agent."""
        # return ChatPromptTemplate.from_messages([
        #     ("system", """You are an efficient workflow coordinator for a multi-agent AI system.
        #     Your job is to orchestrate the analysis of text files and images related to a user's topic.
        #     Follow these steps in order:
        #     1. First analyze text files for relevance to the topic
        #     2. Then process images for relevance to the topic
        #     3. Generate a comprehensive report combining both analyses
        #     4. Check sustainability metrics
            
        #     Be efficient with resources and focus on finding information relevant to the user's topic.
        #     If one type of analysis fails, try to continue with the other type.
        #     Always provide clear updates on the progress of each step.
        #     """),
        #     ("user", "{input}"),
        # ])
    
    def initialize_workflow(self, topic: str, text_files: List[str], image_files: List[str]) -> Dict[str, Any]:
        """
        Initialize a new workflow for the given topic and files.
        Returns a workflow status dict.
        """
        # Generate a workflow ID
        self.workflow_id = f"workflow_{int(time.time())}"
        self.current_topic = topic
        
        # Initialize workflow state
        self.workflow_state[topic] = {
            "workflow_id": self.workflow_id,
            "topic": topic,
            "text_files": text_files,
            "image_files": image_files,
            "start_time": datetime.now().isoformat(),
            "status": "initialized",
            "steps_completed": [],
            "text_analysis": None,
            "image_analysis": None,
            "report": None
        }
        
        self.logger.info(f"Initialized workflow {self.workflow_id} for topic: {topic}")
        
        # Log initial token budget if available
        if self.token_manager:
            self.workflow_state[topic]["initial_token_budget"] = self.token_manager.get_usage_stats()
        
        return {
            "workflow_id": self.workflow_id,
            "topic": topic,
            "status": "initialized",
            "message": f"Workflow initialized with {len(text_files)} text files and {len(image_files)} image files"
        }
    
    def execute_workflow(self) -> Dict[str, Any]:
        """
        Execute the current workflow using either LangChain agent or direct coordination.
        Returns the workflow results.
        """
        if not self.current_topic or self.current_topic not in self.workflow_state:
            return {"error": "No active workflow. Please initialize a workflow first."}
        
        topic = self.current_topic
        workflow = self.workflow_state[topic]
        text_files = workflow["text_files"]
        image_files = workflow["image_files"]
        
        start_time = time.time()
        self.logger.info(f"Executing workflow {workflow['workflow_id']} for topic: {topic}")
        
        # Update status
        workflow["status"] = "in_progress"
        
        try:
            # Try to use LangChain agent if available
            if self.agent_executor:
                agent_input = f"""
                I need to analyze information about the topic: "{topic}".
                I have {len(text_files)} text files and {len(image_files)} image files to analyze.
                Please coordinate the analysis process and generate a comprehensive report.
                """
                
                agent_result = self.agent_executor.invoke({"input": agent_input})
                
                # Extract relevant information from agent output
                workflow["agent_output"] = agent_result
                
                # Update status
                workflow["status"] = "completed"
                workflow["end_time"] = datetime.now().isoformat()
                workflow["processing_time"] = time.time() - start_time
                
                return {
                    "workflow_id": workflow["workflow_id"],
                    "topic": topic,
                    "status": "completed",
                    "message": "Workflow completed successfully using LangChain agent",
                    "report": workflow.get("report", {})
                }
            else:
                # Fallback to direct coordination
                return self._direct_coordination(topic, text_files, image_files)
                
        except Exception as e:
            self.logger.error(f"Error executing workflow: {e}")
            
            # Fallback to direct coordination
            self.logger.info("Falling back to direct coordination")
            return self._direct_coordination(topic, text_files, image_files)
    
    def _direct_coordination(self, topic: str, text_files: List[str], image_files: List[str]) -> Dict[str, Any]:
        """
        Directly coordinate the workflow without using LangChain.
        This is a fallback method if LangChain initialization fails or errors occur.
        """
        workflow = self.workflow_state[topic]
        start_time = time.time()
        
        # Step 1: Analyze text files
        if self.text_analysis_agent and text_files:
            try:
                self.logger.info(f"Analyzing {len(text_files)} text files")
                text_analysis = self.text_analysis_agent.process_text_files(topic, text_files)
                workflow["text_analysis"] = text_analysis
                workflow["steps_completed"].append("text_analysis")
                self.logger.info(f"Text analysis completed. Found {text_analysis.get('relevant_documents', 0)} relevant documents")
            except Exception as e:
                self.logger.error(f"Error in text analysis: {e}")
                workflow["text_analysis_error"] = str(e)
        
        # Step 2: Process images
        if self.image_processing_agent and image_files:
            try:
                self.logger.info(f"Processing {len(image_files)} images")
                image_analysis = self.image_processing_agent.process_image_files(topic, image_files)
                workflow["image_analysis"] = image_analysis
                workflow["steps_completed"].append("image_analysis")
                self.logger.info(f"Image processing completed. Found {image_analysis.get('relevant_images', 0)} relevant images")
            except Exception as e:
                self.logger.error(f"Error in image processing: {e}")
                workflow["image_analysis_error"] = str(e)
        
        # Step 3: Generate report
        if self.report_generation_agent:
            try:
                self.logger.info("Generating report")
                report = self.report_generation_agent.generate_report(
                    topic, 
                    workflow.get("text_analysis"), 
                    workflow.get("image_analysis")
                )
                workflow["report"] = report
                workflow["steps_completed"].append("report_generation")
                self.logger.info(f"Report generated with confidence level: {report.get('confidence_level', 'unknown')}")
            except Exception as e:
                self.logger.error(f"Error in report generation: {e}")
                workflow["report_generation_error"] = str(e)
        
        # Step 4: Get sustainability metrics
        if self.metrics_agent:
            try:
                self.logger.info("Getting sustainability metrics")
                metrics = self.metrics_agent.generate_sustainability_report()
                workflow["sustainability_metrics"] = metrics
                workflow["steps_completed"].append("metrics_collection")
            except Exception as e:
                self.logger.error(f"Error getting sustainability metrics: {e}")
                workflow["metrics_error"] = str(e)
        
        # Update workflow status
        workflow["status"] = "completed"
        workflow["end_time"] = datetime.now().isoformat()
        workflow["processing_time"] = time.time() - start_time
        
        return {
            "workflow_id": workflow["workflow_id"],
            "topic": topic,
            "status": "completed",
            "message": "Workflow completed successfully using direct coordination",
            "steps_completed": workflow["steps_completed"],
            "processing_time": workflow["processing_time"],
            "report": workflow.get("report", {})
        }
    
    def get_workflow_status(self, workflow_id: Optional[str] = None) -> Dict[str, Any]:
        """
        Get the status of a workflow.
        If workflow_id is not provided, returns the status of the current workflow.
        """
        if workflow_id:
            # Find workflow by ID
            for topic, workflow in self.workflow_state.items():
                if workflow.get("workflow_id") == workflow_id:
                    return {
                        "workflow_id": workflow_id,
                        "topic": topic,
                        "status": workflow.get("status", "unknown"),
                        "steps_completed": workflow.get("steps_completed", []),
                        "processing_time": workflow.get("processing_time", 0) if workflow.get("status") == "completed" else None
                    }
            
            # Workflow not found
            return {"error": f"Workflow {workflow_id} not found"}
        
        # Return current workflow status
        if not self.current_topic or self.current_topic not in self.workflow_state:
            return {"error": "No active workflow"}
            
        workflow = self.workflow_state[self.current_topic]
        return {
            "workflow_id": workflow.get("workflow_id"),
            "topic": self.current_topic,
            "status": workflow.get("status", "unknown"),
            "steps_completed": workflow.get("steps_completed", []),
            "processing_time": workflow.get("processing_time", 0) if workflow.get("status") == "completed" else None
        }


    def _store_workflow_results(self, topic: str) -> None:
        """
        Store workflow results in cache for future reuse.
        """
        if not self.cache_manager or topic not in self.workflow_state:
            return
            
        workflow = self.workflow_state[topic]
        
        # Only cache completed workflows
        if workflow.get("status") != "completed":
            return
            
        # Store text analysis results
        if "text_analysis" in workflow and workflow["text_analysis"]:
            text_key = f"text_analysis:{topic}"
            self.cache_manager.put(
                text_key, 
                workflow["text_analysis"], 
                namespace="workflow_results"
            )
        
        # Store image analysis results
        if "image_analysis" in workflow and workflow["image_analysis"]:
            image_key = f"image_analysis:{topic}"
            self.cache_manager.put(
                image_key, 
                workflow["image_analysis"], 
                namespace="workflow_results"
            )
        
        # Store report
        if "report" in workflow and workflow["report"]:
            report_key = f"report:{topic}"
            self.cache_manager.put(
                report_key, 
                workflow["report"], 
                namespace="workflow_results"
            )
            
        self.logger.info(f"Stored workflow results for topic '{topic}' in cache")

    def _get_cached_results(self, topic: str, file_paths: List[str]) -> Dict[str, Any]:
        """
        Try to retrieve cached results for the given topic and files.
        Returns a dict of cached components or empty dict if nothing cached.
        """
        if not self.cache_manager:
            return {}
            
        # Create a cache key that includes file information
        files_hash = str(hash(tuple(sorted(file_paths))))
        cache_key = f"workflow:{topic}:{files_hash}"
        
        cached_results = {}
        
        # Try to get text analysis from cache
        text_key = f"text_analysis:{topic}"
        cache_hit, text_analysis = self.cache_manager.get(text_key, namespace="workflow_results")
        if cache_hit:
            cached_results["text_analysis"] = text_analysis
            self.logger.info(f"Retrieved cached text analysis for topic '{topic}'")
            
        # Try to get image analysis from cache
        image_key = f"image_analysis:{topic}"
        cache_hit, image_analysis = self.cache_manager.get(image_key, namespace="workflow_results")
        if cache_hit:
            cached_results["image_analysis"] = image_analysis
            self.logger.info(f"Retrieved cached image analysis for topic '{topic}'")
            
        # Try to get report from cache
        report_key = f"report:{topic}"
        cache_hit, report = self.cache_manager.get(report_key, namespace="workflow_results")
        if cache_hit:
            cached_results["report"] = report
            self.logger.info(f"Retrieved cached report for topic '{topic}'")
        
        return cached_results
    
    def cleanup_workflow(self, workflow_id: Optional[str] = None) -> Dict[str, Any]:
        """
        Clean up resources for a completed workflow.
        If workflow_id is not provided, cleans up the current workflow.
        """
        if workflow_id:
            # Find workflow by ID
            target_topic = None
            for topic, workflow in self.workflow_state.items():
                if workflow.get("workflow_id") == workflow_id:
                    target_topic = topic
                    break
                    
            if not target_topic:
                return {"error": f"Workflow {workflow_id} not found"}
        else:
            target_topic = self.current_topic
            
        if not target_topic or target_topic not in self.workflow_state:
            return {"error": "No workflow to clean up"}
            
        # Store results in cache before cleanup
        self._store_workflow_results(target_topic)
        
        # Get workflow for reporting
        workflow = self.workflow_state[target_topic]
        workflow_id = workflow.get("workflow_id")
        
        # Clean up large data structures but keep metadata
        if "text_analysis" in workflow:
            # Keep summary but remove large content
            if "processed_documents" in workflow["text_analysis"]:
                for doc in workflow["text_analysis"]["processed_documents"]:
                    if "content" in doc:
                        doc["content"] = f"[CLEANED] {len(doc['content'])} characters"
        
        if "image_analysis" in workflow:
            # Remove any image data that might be stored
            if "processed_images" in workflow["image_analysis"]:
                for img in workflow["image_analysis"]["processed_images"]:
                    if "image" in img:
                        del img["image"]
        
        self.logger.info(f"Cleaned up workflow {workflow_id} for topic '{target_topic}'")
        
        return {
            "workflow_id": workflow_id,
            "topic": target_topic,
            "status": "cleaned_up",
            "message": "Workflow resources have been cleaned up"
        }