Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
973c0b5
1
Parent(s):
139a6a5
hf cuda issue
Browse files
app.py
CHANGED
@@ -663,7 +663,7 @@ def ready_sample(img_cropped, img_original, ex_mask, inpaint_mask, keypts, keypt
|
|
663 |
img = cv2.resize(img_cropped["background"][..., :3], opts.image_size, interpolation=cv2.INTER_AREA)
|
664 |
else:
|
665 |
img = cv2.resize(img_original[..., :3], opts.image_size, interpolation=cv2.INTER_AREA)
|
666 |
-
sam_predictor.set_image(img)
|
667 |
if keypts is None and keypts_np is not None:
|
668 |
keypts = keypts_np
|
669 |
else:
|
@@ -724,7 +724,7 @@ def ready_sample(img_cropped, img_original, ex_mask, inpaint_mask, keypts, keypt
|
|
724 |
img,
|
725 |
keypts,
|
726 |
hand_mask,
|
727 |
-
device
|
728 |
target_size=(256, 256),
|
729 |
latent_size=(32, 32),
|
730 |
):
|
@@ -760,11 +760,11 @@ def ready_sample(img_cropped, img_original, ex_mask, inpaint_mask, keypts, keypt
|
|
760 |
img,
|
761 |
keypts,
|
762 |
hand_mask * (1 - inpaint_mask),
|
763 |
-
|
764 |
target_size=opts.image_size,
|
765 |
latent_size=opts.latent_size,
|
766 |
)
|
767 |
-
latent = opts.latent_scaling_factor * autoencoder.encode(image).sample()
|
768 |
target_cond = torch.cat([heatmaps, torch.zeros_like(mask)], 1)
|
769 |
ref_cond = torch.cat([latent, heatmaps, mask], 1)
|
770 |
ref_cond = torch.zeros_like(ref_cond)
|
|
|
663 |
img = cv2.resize(img_cropped["background"][..., :3], opts.image_size, interpolation=cv2.INTER_AREA)
|
664 |
else:
|
665 |
img = cv2.resize(img_original[..., :3], opts.image_size, interpolation=cv2.INTER_AREA)
|
666 |
+
sam_predictor.to("cuda").set_image(img)
|
667 |
if keypts is None and keypts_np is not None:
|
668 |
keypts = keypts_np
|
669 |
else:
|
|
|
724 |
img,
|
725 |
keypts,
|
726 |
hand_mask,
|
727 |
+
device,
|
728 |
target_size=(256, 256),
|
729 |
latent_size=(32, 32),
|
730 |
):
|
|
|
760 |
img,
|
761 |
keypts,
|
762 |
hand_mask * (1 - inpaint_mask),
|
763 |
+
device=pre_device,
|
764 |
target_size=opts.image_size,
|
765 |
latent_size=opts.latent_size,
|
766 |
)
|
767 |
+
latent = opts.latent_scaling_factor * autoencoder.encode(image.cuda()).sample()
|
768 |
target_cond = torch.cat([heatmaps, torch.zeros_like(mask)], 1)
|
769 |
ref_cond = torch.cat([latent, heatmaps, mask], 1)
|
770 |
ref_cond = torch.zeros_like(ref_cond)
|