File size: 963 Bytes
8eed7e4
 
 
 
7de4082
 
73e6e91
8eed7e4
7de4082
73e6e91
93795ea
 
 
 
8eed7e4
 
 
 
 
 
 
 
7de4082
 
 
 
73e6e91
26648cc
73e6e91
26648cc
73e6e91
 
 
 
 
7de4082
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from typing import Union

from fastapi import FastAPI

from transformers import pipeline

from newspaper import Article

app = FastAPI()

# see dockerfile. it has a line to download the model when the docket container is initialized
# summarizer = pipeline("summarization", "/code/models")

summarizer = pipeline("summarization", model="Falconsai/text_summarization")

@app.get("/")
def read_root():
    return {"Hello": "World"}


@app.get("/items/{item_id}")
def read_item(item_id: int, q: Union[str, None] = None):
    return {"item_id": item_id, "q": q}

@app.post("/summarize")
async def summarize(text: str):
        
    # url = 'https://towardsdatascience.com/containerizing-huggingface-transformers-for-gpu-inference-with-docker-and-fastapi-on-aws-d4a83edede2f'
    
    article = Article(text)
    article.download()
    
    article.parse()
    
    return {"summary": f"{summarizer(article.text, max_length=130, min_length=30, do_sample=False)}"}