Upload 2 files
Browse files- app.py +70 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import docx2txt
|
4 |
+
import fitz # PyMuPDF
|
5 |
+
import re
|
6 |
+
import nltk
|
7 |
+
from collections import Counter
|
8 |
+
nltk.download('punkt')
|
9 |
+
|
10 |
+
# Helper function to extract text from uploaded resume
|
11 |
+
def extract_text(uploaded_file):
|
12 |
+
if uploaded_file.name.endswith('.pdf'):
|
13 |
+
pdf_document = fitz.open(stream=uploaded_file.read(), filetype="pdf")
|
14 |
+
text = ""
|
15 |
+
for page in pdf_document:
|
16 |
+
text += page.get_text()
|
17 |
+
return text
|
18 |
+
elif uploaded_file.name.endswith('.docx'):
|
19 |
+
return docx2txt.process(uploaded_file)
|
20 |
+
else:
|
21 |
+
return None
|
22 |
+
|
23 |
+
# Simple JD keyword extractor
|
24 |
+
def extract_keywords(jd_text):
|
25 |
+
words = nltk.word_tokenize(jd_text)
|
26 |
+
words = [w.lower() for w in words if w.isalpha()]
|
27 |
+
common_words = Counter(words)
|
28 |
+
keywords = [word for word, freq in common_words.items() if freq >= 1]
|
29 |
+
return keywords
|
30 |
+
|
31 |
+
# Simple resume enhancer
|
32 |
+
def enhance_resume(resume_text, keywords):
|
33 |
+
enhanced_text = resume_text
|
34 |
+
missing_keywords = []
|
35 |
+
for keyword in keywords:
|
36 |
+
if keyword.lower() not in resume_text.lower():
|
37 |
+
missing_keywords.append(keyword)
|
38 |
+
if missing_keywords:
|
39 |
+
enhanced_text += "\n\nAdditional Skills: " + ", ".join(missing_keywords)
|
40 |
+
return enhanced_text, missing_keywords
|
41 |
+
|
42 |
+
# Streamlit App
|
43 |
+
st.title("JobForge - Resume Optimizer")
|
44 |
+
st.write("Upload your resume and paste a job description to optimize your resume!")
|
45 |
+
|
46 |
+
uploaded_resume = st.file_uploader("Upload Your Resume", type=["pdf", "docx"])
|
47 |
+
|
48 |
+
job_description = st.text_area("Paste Job Description Here")
|
49 |
+
|
50 |
+
if st.button("Forge My Resume"):
|
51 |
+
if uploaded_resume and job_description:
|
52 |
+
with st.spinner('Forging your resume...'):
|
53 |
+
resume_text = extract_text(uploaded_resume)
|
54 |
+
jd_keywords = extract_keywords(job_description)
|
55 |
+
enhanced_resume, missing_keywords = enhance_resume(resume_text, jd_keywords)
|
56 |
+
|
57 |
+
st.subheader("Optimized Resume Preview:")
|
58 |
+
st.text_area("", enhanced_resume, height=400)
|
59 |
+
|
60 |
+
st.subheader("Match Score:")
|
61 |
+
match_percent = (len(jd_keywords) - len(missing_keywords)) / len(jd_keywords) * 100
|
62 |
+
st.write(f"Your resume matches {match_percent:.2f}% of the job description.")
|
63 |
+
|
64 |
+
st.subheader("Missing Keywords:")
|
65 |
+
if missing_keywords:
|
66 |
+
st.write(", ".join(missing_keywords))
|
67 |
+
else:
|
68 |
+
st.success("Your resume covers all keywords!")
|
69 |
+
else:
|
70 |
+
st.error("Please upload a resume and paste a job description to proceed.")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
python-docx
|
3 |
+
PyMuPDF
|
4 |
+
nltk
|