Spaces:
Running
Running
File size: 3,555 Bytes
ba1d68e 9f9dcd8 ba1d68e 9f9dcd8 c946e64 9f9dcd8 59da46e 9f9dcd8 59da46e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import gradio as gr # Ensure Gradio is correctly imported
import pandas as pd
import plotly.express as px
from transformers import pipeline
from datasets import load_dataset
# Load the additional datasets
deepseek_prover_v1 = load_dataset('deepseek-ai/DeepSeek-Prover-V1', split='train')
cybersecurity_kg = load_dataset('CyberPeace-Institute/Cybersecurity-Knowledge-Graph', split='train')
codesearchnet_pep8 = load_dataset('kejian/codesearchnet-python-pep8-v1', split='train')
code_text_python = load_dataset('semeru/code-text-python', split='train')
# Sample CVE data (for visualization)
cve_data = {
'CVE ID': ['CVE-2023-0001', 'CVE-2023-0002', 'CVE-2023-0003', 'CVE-2023-0004', 'CVE-2023-0005'],
'Severity': ['High', 'Medium', 'Low', 'High', 'Medium'],
'Description': [
'A critical vulnerability in the web application framework.',
'A medium-severity vulnerability in the database management system.',
'A low-severity vulnerability in the network firewall.',
'A critical vulnerability in the operating system kernel.',
'A medium-severity vulnerability in the web server.'
],
'Published Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05']
}
# Convert CVE data to a DataFrame
cve_df = pd.DataFrame(cve_data)
# Function to filter CVEs by severity
def filter_cves(severity):
filtered_df = cve_df[cve_df['Severity'] == severity]
return filtered_df
# Function to generate a bar chart of CVEs by severity
def generate_cve_chart():
fig = px.bar(cve_df, x='Severity', y='CVE ID', color='Severity', title='CVEs by Severity')
return fig
# Function to analyze the sentiment of a CVE description
def analyze_sentiment(description):
sentiment_pipeline = pipeline('sentiment-analysis')
result = sentiment_pipeline(description)
return result
# Create the Gradio app
with gr.Blocks() as demo:
# Title and description
gr.Markdown("# Purple Teaming Cyber Security Dashboard")
gr.Markdown("This dashboard provides threat intelligence and CVEs for purple teaming.")
# CVE Filter
with gr.Row():
severity_filter = gr.Dropdown(choices=['High', 'Medium', 'Low'], label='Filter by Severity')
cve_table = gr.Dataframe(label='CVEs', value=cve_df)
# Event listener for severity filter
severity_filter.change(fn=filter_cves, inputs=severity_filter, outputs=cve_table)
# CVE Chart
with gr.Row():
cve_chart = gr.Plot(label='CVEs by Severity')
cve_chart.value = generate_cve_chart() # Directly assign the figure to the Plot component
# Sentiment Analysis
with gr.Row():
description_input = gr.Textbox(label='CVE Description')
sentiment_output = gr.JSON(label='Sentiment Analysis')
analyze_btn = gr.Button('Analyze Sentiment')
# Event listener for sentiment analysis
analyze_btn.click(fn=analyze_sentiment, inputs=description_input, outputs=sentiment_output)
# Display additional datasets in the dashboard
with gr.Tab("Datasets Overview"):
gr.Markdown("## Overview of Additional Datasets")
# Display datasets as dataframes
with gr.Row():
gr.Dataframe(label="DeepSeek-Prover-V1", value=deepseek_prover_v1)
gr.Dataframe(label="Cybersecurity Knowledge Graph", value=cybersecurity_kg)
gr.Dataframe(label="Code SearchNet Python PEP8", value=codesearchnet_pep8)
gr.Dataframe(label="Code Text Python", value=code_text_python)
# Launch the app
demo.launch(share=True) |