kcarnold commited on
Commit
2dbe738
·
1 Parent(s): 06e1d4b

Maybe run this all in one

Browse files
Files changed (1) hide show
  1. simplified.py +183 -0
simplified.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ from transformers import DynamicCache
5
+
6
+ USE_GPU = torch.cuda.is_available()
7
+
8
+ API_SERVER = "https://tools.kenarnold.org/api"
9
+
10
+ @st.cache_resource
11
+ def load_model():
12
+ import torch
13
+
14
+ model_name = 'google/gemma-2-9b-it'
15
+
16
+ dtype = torch.bfloat16 if USE_GPU else torch.float16
17
+
18
+ llm = {
19
+ 'tokenizer': AutoTokenizer.from_pretrained(model_name),
20
+ 'model': AutoModelForCausalLM.from_pretrained(
21
+ model_name,
22
+ device_map="auto" if USE_GPU else "cpu",
23
+ torch_dtype=dtype,
24
+ attn_implementation='eager'
25
+ )
26
+ }
27
+ llm['model'].eval()
28
+ return llm
29
+
30
+
31
+
32
+ def type_assistant_response():
33
+ if 'messages' not in st.session_state or st.button("Start a new conversation"):
34
+ st.session_state['messages'] = [{"role": "user", "content": ""}]
35
+ st.session_state['msg_in_progress'] = ""
36
+ messages = st.session_state.messages
37
+
38
+ def rewind_to(i):
39
+ st.session_state.messages = st.session_state.messages[:i+1]
40
+ st.session_state['msg_in_progress'] = st.session_state.messages[-1]['content']
41
+
42
+ for i, message in enumerate(st.session_state.messages[:-1]):
43
+ with st.chat_message(message["role"]):
44
+ st.markdown(message["content"])
45
+ st.button("Edit", on_click=rewind_to, args=(i,), key=f"rewind_to_{i}")
46
+
47
+ # Display message-in-progress in chat message container
48
+ last_role = messages[-1]["role"]
49
+ with st.chat_message(last_role):
50
+ label = "Your message" if last_role == "user" else "Assistant response"
51
+ msg_in_progress = st.text_area(label, placeholder="Clicking the buttons below will update this field. You can also edit it directly; press Ctrl+Enter to apply changes.", height=300, key="msg_in_progress")
52
+ if msg_in_progress is None:
53
+ msg_in_progress = ""
54
+
55
+ messages[-1]['content'] = msg_in_progress
56
+
57
+ def append_token(word):
58
+ messages[-1]['content'] = st.session_state['msg_in_progress'] = (
59
+ msg_in_progress + word
60
+ )
61
+
62
+ allow_multi_word = st.checkbox("Allow multi-word predictions", value=False)
63
+
64
+ response = continue_messages(
65
+ messages=messages,
66
+ n_branch_tokens=5,
67
+ n_future_tokens=2
68
+ )
69
+
70
+ continuations = response['continuations']
71
+ for i, (col, continuation) in enumerate(zip(st.columns(len(continuations)), continuations)):
72
+ token = continuation['doc_text']
73
+ with col:
74
+ if not allow_multi_word and ' ' in token[1:]:
75
+ token = token[0] + token[1:].split(' ', 1)[0]
76
+
77
+ # if not allow_multi_word:
78
+ # import re
79
+ # split_result = re.split(r'(\s+)', token, maxsplit=1)
80
+ # assert len(split_result) == 3
81
+ # before_ws, token, after_ws = split_result
82
+ # print(repr(split_result))
83
+ # if before_ws != '':
84
+ # token = before_ws
85
+ token_display = show_token(token)
86
+ st.button(token_display, on_click=append_token, args=(token,), key=i, use_container_width=True)
87
+
88
+ def send_message():
89
+ other_role = "assistant" if last_role == "user" else "user"
90
+ st.session_state['messages'].append({"role": other_role, "content": ""})
91
+ st.session_state['msg_in_progress'] = ""
92
+ st.button("Send", on_click=send_message)
93
+
94
+ def show_token(token: str, escape_markdown=True) -> str:
95
+ token_display = token.replace('\n', '↵').replace('\t', '⇥')
96
+ if escape_markdown:
97
+ for c in "\\`*_{}[]()#+-.!":
98
+ token_display = token_display.replace(c, "\\" + c)
99
+ return token_display
100
+
101
+
102
+ def continue_messages(messages, n_branch_tokens, n_future_tokens):
103
+
104
+ messages = [{"role": m.role, "content": m.content} for m in messages]
105
+ if len(messages) == 0:
106
+ raise ValueError("At least one message must be provided.")
107
+
108
+ llm = load_model()
109
+ model = llm['model']
110
+ tokenizer = llm['tokenizer']
111
+
112
+ generated_docs = continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens)
113
+
114
+ return {
115
+ 'continuations': [dict(doc_text=doc) for doc in generated_docs]
116
+ }
117
+
118
+
119
+ def get_lookahead_sequences(model, tokenizer, hypotheses, n_branch_tokens, device):
120
+ """
121
+ For each of the n_branch_tokens next tokens, generate most-likely next tokens and append back on.
122
+ """
123
+ assert len(hypotheses.shape) == 2
124
+ assert hypotheses.shape[0] == 1
125
+ n_tokens_so_far = hypotheses.shape[1]
126
+ past_key_values = DynamicCache()
127
+
128
+ with torch.no_grad():
129
+ model_outs_onestep = model(hypotheses, output_hidden_states=True, past_key_values=past_key_values)
130
+
131
+ branch_tokens = model_outs_onestep.logits[0, -1].topk(n_branch_tokens).indices
132
+
133
+ # split the cache into n_branch_tokens reps. We pretend we're doing a "Beam search"...
134
+ past_key_values.reorder_cache(torch.zeros((n_branch_tokens,), dtype=torch.long, device=device))
135
+
136
+ # Now call the model again, passing the kv cache, so we can continue generating.
137
+ # Each of the n_branch_tokens next tokens will be considered as one sequence in a "batch".
138
+ next_tokens_as_batch = branch_tokens.unsqueeze(1)
139
+ assert next_tokens_as_batch.shape == (n_branch_tokens, 1)
140
+
141
+ position_id_for_final_token = n_tokens_so_far
142
+ cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device)
143
+ with torch.no_grad():
144
+ model_outs = model(
145
+ next_tokens_as_batch,
146
+ past_key_values=past_key_values,
147
+ output_hidden_states=True,
148
+ use_cache=True,
149
+ # the cache surprisingly doesn't know the position of the last token
150
+ cache_position=cache_position
151
+ )
152
+
153
+ # Grab the single most likely token from each of the n_branch_tokens sequences
154
+ next_token_logits = model_outs.logits[:, -1]
155
+ vocab_size = model.config.vocab_size
156
+ assert next_token_logits.shape == (n_branch_tokens, vocab_size), f"{next_token_logits.shape=}, {n_branch_tokens=}, {vocab_size=}"
157
+ most_likely_token_ids = next_token_logits.argmax(dim=-1)
158
+
159
+ # Stick them at the end of the branch tokens.
160
+ assert most_likely_token_ids.shape == (n_branch_tokens,)
161
+ lookahead_sequences = torch.cat([
162
+ branch_tokens.unsqueeze(1),
163
+ most_likely_token_ids.unsqueeze(1)
164
+ ], dim=1)
165
+ assert lookahead_sequences.shape == (n_branch_tokens, 2)
166
+ return lookahead_sequences, next_token_logits
167
+
168
+
169
+ def continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens):
170
+ # Note: we're ignoring n_future_tokens right now since the old implementation was buggy.
171
+ device = model.device
172
+
173
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device)
174
+ print(tokenizer.batch_decode(tokenized_chat, skip_special_tokens=False))
175
+
176
+ lookahead_sequences, next_token_logits = get_lookahead_sequences(
177
+ model, tokenizer, tokenized_chat, n_branch_tokens, device)
178
+
179
+ generated_docs = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True)
180
+ return generated_docs
181
+
182
+ type_assistant_response()
183
+