Adam Jirkovsky
commited on
Commit
Β·
7dead3c
1
Parent(s):
6344c55
Reaply GUI changes
Browse files- app.py +62 -64
- src/submission/submit.py +1 -1
app.py
CHANGED
@@ -30,6 +30,9 @@ from src.display.utils import (
|
|
30 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO
|
31 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
32 |
from src.submission.submit import add_new_eval
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
original_df = None
|
@@ -41,7 +44,7 @@ def restart_space():
|
|
41 |
|
42 |
def download_data():
|
43 |
global original_df
|
44 |
-
global leaderboard_df
|
45 |
try:
|
46 |
print(EVAL_REQUESTS_PATH,QUEUE_REPO)
|
47 |
snapshot_download(
|
@@ -60,7 +63,7 @@ def download_data():
|
|
60 |
|
61 |
_, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
62 |
leaderboard_df = original_df.copy()
|
63 |
-
|
64 |
|
65 |
download_data()
|
66 |
|
@@ -78,7 +81,7 @@ def update_table(
|
|
78 |
hidden_df: pd.DataFrame,
|
79 |
columns: list,
|
80 |
query: str,
|
81 |
-
):
|
82 |
#filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
83 |
filtered_df = filter_queries(query, hidden_df)
|
84 |
df = select_columns(filtered_df, columns)
|
@@ -151,7 +154,15 @@ def validate_upload(input):
|
|
151 |
#raise gr.Error("Cannot divide by zero!")
|
152 |
except:
|
153 |
raise gr.Error("Cannot parse file")
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
|
157 |
demo = gr.Blocks(css=custom_css)
|
@@ -185,7 +196,7 @@ with demo:
|
|
185 |
elem_id="column-select",
|
186 |
interactive=True,
|
187 |
)
|
188 |
-
"""
|
189 |
with gr.Column(min_width=320):
|
190 |
# with gr.Box(elem_id="box-filter"):
|
191 |
filter_columns_type = gr.CheckboxGroup(
|
@@ -215,7 +226,7 @@ with demo:
|
|
215 |
value=leaderboard_df[
|
216 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
217 |
+ shown_columns.value
|
218 |
-
|
219 |
],
|
220 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
221 |
datatype=TYPES,
|
@@ -264,7 +275,7 @@ with demo:
|
|
264 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
265 |
"""
|
266 |
with gr.Column():
|
267 |
-
|
268 |
with gr.Accordion(
|
269 |
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
270 |
open=False,
|
@@ -287,6 +298,7 @@ with demo:
|
|
287 |
datatype=EVAL_TYPES,
|
288 |
row_count=5,
|
289 |
)
|
|
|
290 |
with gr.Accordion(
|
291 |
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
292 |
open=False,
|
@@ -304,62 +316,47 @@ with demo:
|
|
304 |
|
305 |
with gr.Row():
|
306 |
with gr.Column():
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
349 |
-
"""
|
350 |
-
submit_button = gr.Button("Submit Eval", interactive=True)
|
351 |
-
submission_result = gr.Markdown()
|
352 |
-
submit_button.click(
|
353 |
-
fn = add_new_eval,
|
354 |
-
inputs = [
|
355 |
-
model_name_textbox,
|
356 |
-
upload_button,
|
357 |
-
precision,
|
358 |
-
hf_model_id,
|
359 |
-
contact_email
|
360 |
-
],
|
361 |
-
outputs = [submission_result, model_name_textbox, precision, hf_model_id, contact_email],
|
362 |
-
)
|
363 |
|
364 |
with gr.Row():
|
365 |
with gr.Accordion("π Citation", open=False):
|
@@ -374,4 +371,5 @@ with demo:
|
|
374 |
#scheduler = BackgroundScheduler()
|
375 |
#scheduler.add_job(restart_space, "interval", seconds=3600)
|
376 |
#scheduler.start()
|
377 |
-
demo.queue(default_concurrency_limit=40).launch(server_name="0.0.0.0")
|
|
|
|
30 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO
|
31 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
32 |
from src.submission.submit import add_new_eval
|
33 |
+
from captcha.image import ImageCaptcha
|
34 |
+
from PIL import Image
|
35 |
+
import random, string
|
36 |
|
37 |
|
38 |
original_df = None
|
|
|
44 |
|
45 |
def download_data():
|
46 |
global original_df
|
47 |
+
global leaderboard_df
|
48 |
try:
|
49 |
print(EVAL_REQUESTS_PATH,QUEUE_REPO)
|
50 |
snapshot_download(
|
|
|
63 |
|
64 |
_, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
65 |
leaderboard_df = original_df.copy()
|
66 |
+
|
67 |
|
68 |
download_data()
|
69 |
|
|
|
81 |
hidden_df: pd.DataFrame,
|
82 |
columns: list,
|
83 |
query: str,
|
84 |
+
):
|
85 |
#filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
86 |
filtered_df = filter_queries(query, hidden_df)
|
87 |
df = select_columns(filtered_df, columns)
|
|
|
154 |
#raise gr.Error("Cannot divide by zero!")
|
155 |
except:
|
156 |
raise gr.Error("Cannot parse file")
|
157 |
+
|
158 |
+
|
159 |
+
def generate_captcha(width=200, height=150, length=4):
|
160 |
+
text = ''.join(random.choices(string.ascii_uppercase + string.digits, k=length))
|
161 |
+
captcha_obj = ImageCaptcha(width, height)
|
162 |
+
data = captcha_obj.generate(text)
|
163 |
+
image = Image.open(data)
|
164 |
+
return image, text
|
165 |
+
|
166 |
|
167 |
|
168 |
demo = gr.Blocks(css=custom_css)
|
|
|
196 |
elem_id="column-select",
|
197 |
interactive=True,
|
198 |
)
|
199 |
+
"""
|
200 |
with gr.Column(min_width=320):
|
201 |
# with gr.Box(elem_id="box-filter"):
|
202 |
filter_columns_type = gr.CheckboxGroup(
|
|
|
226 |
value=leaderboard_df[
|
227 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
228 |
+ shown_columns.value
|
229 |
+
|
230 |
],
|
231 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
232 |
datatype=TYPES,
|
|
|
275 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
276 |
"""
|
277 |
with gr.Column():
|
278 |
+
|
279 |
with gr.Accordion(
|
280 |
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
281 |
open=False,
|
|
|
298 |
datatype=EVAL_TYPES,
|
299 |
row_count=5,
|
300 |
)
|
301 |
+
|
302 |
with gr.Accordion(
|
303 |
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
304 |
open=False,
|
|
|
316 |
|
317 |
with gr.Row():
|
318 |
with gr.Column():
|
319 |
+
with gr.Group():
|
320 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
321 |
+
#precision = gr.Radio(["bfloat16", "float16", "4bit"], label="Precision", info="What precision are you using for inference?")
|
322 |
+
precision = gr.Dropdown(
|
323 |
+
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
324 |
+
label="Precision",
|
325 |
+
multiselect=False,
|
326 |
+
value="other",
|
327 |
+
interactive=True,
|
328 |
+
info="What weight precision were you using during the evaluation?"
|
329 |
+
)
|
330 |
+
hf_model_id = gr.Textbox(label="Model link (Optional)", info="URL to the model's Hugging Face repository, or it's official website")
|
331 |
+
contact_email = gr.Textbox(label="Your E-Mail")
|
332 |
+
file_input = gr.File(file_count="single", interactive=True)
|
333 |
+
#file_input.upload(validate_upload, file_input)
|
334 |
+
upload_button = gr.UploadButton("Upload json", file_types=['.json'])
|
335 |
+
upload_button.upload(validate_upload, upload_button, file_input)
|
336 |
+
|
337 |
+
with gr.Group():
|
338 |
+
image, text = generate_captcha()
|
339 |
+
captcha_img = gr.Image(
|
340 |
+
image,
|
341 |
+
#container=False,
|
342 |
+
show_download_button=False,
|
343 |
+
show_fullscreen_button=False,
|
344 |
+
show_share_button=False,
|
345 |
+
)
|
346 |
+
captcha_input = gr.Textbox(placeholder="Enter the text in the image above", show_label=False, container=False)
|
347 |
+
submit_button = gr.Button("Submit Eval", interactive=True)
|
348 |
+
submission_result = gr.Markdown()
|
349 |
+
submit_button.click(
|
350 |
+
fn = add_new_eval,
|
351 |
+
inputs = [
|
352 |
+
model_name_textbox,
|
353 |
+
file_input,
|
354 |
+
precision,
|
355 |
+
hf_model_id,
|
356 |
+
contact_email
|
357 |
+
],
|
358 |
+
outputs = [submission_result, model_name_textbox, precision, hf_model_id, contact_email],
|
359 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
|
361 |
with gr.Row():
|
362 |
with gr.Accordion("π Citation", open=False):
|
|
|
371 |
#scheduler = BackgroundScheduler()
|
372 |
#scheduler.add_job(restart_space, "interval", seconds=3600)
|
373 |
#scheduler.start()
|
374 |
+
demo.queue(default_concurrency_limit=40).launch(server_name="0.0.0.0")
|
375 |
+
|
src/submission/submit.py
CHANGED
@@ -83,7 +83,7 @@ def add_new_eval(
|
|
83 |
|
84 |
if ret['eval_name'] in existing_eval_names:
|
85 |
print(f"Model name {ret['eval_name']} is used!")
|
86 |
-
return styled_error(f"Model name {ret['eval_name']} is used!")
|
87 |
|
88 |
out_path = f"{OUT_DIR}/{eval_name}_eval_request.json"
|
89 |
|
|
|
83 |
|
84 |
if ret['eval_name'] in existing_eval_names:
|
85 |
print(f"Model name {ret['eval_name']} is used!")
|
86 |
+
return styled_error(f"Model name {ret['eval_name']} is used!"), "", "", "", ""
|
87 |
|
88 |
out_path = f"{OUT_DIR}/{eval_name}_eval_request.json"
|
89 |
|