Spaces:
Runtime error
Runtime error
File size: 7,207 Bytes
af40554 60fb221 af40554 60fb221 af40554 60fb221 af40554 60fb221 af40554 60fb221 af40554 60fb221 af40554 60fb221 af40554 60fb221 af40554 adb1259 af40554 af42581 af40554 adb1259 af40554 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# coding=utf8
from llama_index import load_index_from_storage, SimpleDirectoryReader, readers, GPTVectorStoreIndex,StorageContext, ServiceContext, LLMPredictor, PromptHelper
from langchain import OpenAI
import gradio as gr
import random
import time
import sys
import os
from transformers import pipeline
p = pipeline("automatic-speech-recognition")
os.environ["OPENAI_API_KEY"]
css = """
.gradio-container {
background-color: #ffffff;
}
#component-2 {position: absolute; bottom: 0; width: 100%;
}
.app.svelte-ac4rv4>.main.svelte-ac4rv4 {
display: flex;
flex-grow: 1;
flex-direction: column;
background-image: url(https://i.ibb.co/3rVCQz0/background-GPT-1.png);
}
div.svelte-awbtu4 {
display: flex;
flex-direction: inherit;
flex-wrap: wrap;
gap: var(--form-gap-width);
box-shadow: var(--block-shadow);
border: var(--block-border-width) solid #5f0000;
border-radius: var(--radius-lg);
background: #ffffff;
overflow: hidden;
position: fixed;
bottom: 0;
margin-left: -16px;
}
.bot.svelte-6roggh.svelte-6roggh,.pending.svelte-6roggh.svelte-6roggh {
border-color: var(--border-color-primary);
background: #00adef;
color: white;
font-weight: bolder;
}
div.float.svelte-1frtwj3 {
position: absolute;
opacity: 0;
top: var(--block-label-margin);
left: var(--block-label-margin);}
.wrap.svelte-6roggh.svelte-6roggh {
padding: var(--block-padding);
height: 100%;
max-height: 100%;
overflow-y: auto;
}
div.user.svelte-6roggh.svelte-6roggh {
background: #0D1233;
color: white;
font-weight: bolder;
}
div.svelte-1frtwj3 {
display: inline-flex;
align-items: center;
z-index: var(--layer-2);
box-shadow: var(--block-shadow);
border: var(--block-label-border-width) solid #ffffff;
border-top: none;
border-left: none;
border-radius: var(--block-label-radius);
background: #eff6ff;
padding: var(--block-label-padding);
pointer-events: none;
color: var(--block-label-text-color);
font-weight: var(--block-label-text-weight);
width: 100%;
line-height: var(--line-sm);
}
div.bot.svelte-h.svelte-6roggh {
background: #199FDA;
color: white;
font-weight: bolder;
}
div.bot.svelte-17nzccn.svelte-17nzccn {
background: #199FDA;
}
div.user.svelte-6roggh.svelte-6roggh {
background: #0D1233;
}
div.user.svelte-17nzccn.svelte-17nzccn {
background: #0D1233;
}
div.textBoxBot {
display: flex;
flex-direction: inherit;
flex-wrap: wrap;
gap: var(--form-gap-width);
box-shadow: var(--block-shadow);
border: var(--block-border-width) solid #0D1233;
border-radius: var(--radius-lg);
background: #ffffff;
overflow: hidden;
position: fixed;
bottom: 0;
margin-left: -16px;
}
.textarea.svelte-1pie7s6.svelte-1pie7s6 {
display: flex;
flex-direction: inherit;
flex-wrap: wrap;
gap: var(--form-gap-width);
box-shadow: var(--block-shadow);
border: var(--block-border-width) solid #0D1233;
border-radius: var(--radius-lg);
background: #ffffff;
overflow: hidden;
position: fixed;
bottom: 0;
margin-left: -16px;
}
.svelte-1pie7s6.svelte-1pie7s6 {
display: flex;
flex-direction: inherit;
flex-wrap: wrap;
gap: var(--form-gap-width);
box-shadow: var(--block-shadow);
border: 5px solid #0D1233;
border-radius: var(--radius-lg);
border-color: #0D1233;
background: #ffffff;
color: #0D1233;
font-size: 16px;
overflow: hidden;
position: fixed;
bottom: 20px; /* Ajuste a distância vertical do rodapé */
margin-left: -5px;
max-height: 80vh; /* Ajuste a altura máxima da div */
max-width: 78%; /* Ajuste a largura máxima da div */
}
.img.svelte-ms5bsk {
width: 100%;
height: 100%;
background-color: #ffffff;
border: 0px;
border-width: 0px;
}
.app.svelte-ac4rv4.svelte-ac4rv4 {
max-width: none;
background-color: #ffffff;
}
.app.svelte-ac4rv4.svelte-ac4rv4{max-width:none}
.wrap.svelte-1o68geq.svelte-1o68geq {max-height: none}
.block.svelte-mppz8v {
position: relative;
margin: 0;
box-shadow: var(--block-shadow);
border-width: var(--block-border-width);
border-color: #ffffff;
border-radius: var(--block-radius);
background: #ffffff;
width: 100%;
line-height: var(--line-sm);
}
"""
md = """This is some code:
hello
```py
def fn(x, y, z):
print(x, y, z)
"""
def transcribe(audio):
text = p(audio)["text"]
return text
def construct_index(directory_path):
num_outputs = 2000
prompt_helper = PromptHelper(context_window=3900, num_output=256, max_chunk_overlap=20, chunk_size_limit=1024)
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.0, model_name="gpt-3.5-turbo-16k", max_tokens=num_outputs))
documents = SimpleDirectoryReader(directory_path).load_data()
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context, prompt_helper=prompt_helper)
index.storage_context.persist(persist_dir='index.json')
return index
def chatbot(input_text):
num_outputs = 4097
prompt_helper = PromptHelper(context_window=3900, num_output=256, max_chunk_overlap=20, chunk_size_limit=1024)
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.0, model_name="gpt-3.5-turbo-16k", max_tokens=num_outputs))
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
storage_context = StorageContext.from_defaults(persist_dir='index.json')
# load index
index = load_index_from_storage(storage_context)
query_engine = index.as_query_engine(service_context=service_context, verbose=True, response_mode="compact")
response = query_engine.query(input_text)
return str(response.response)
with gr.Blocks(css=css, title='Exposuper', elem_classes=".app.svelte-ac4rv4.svelte-ac4rv4") as demo:
realPath = str(os.path.dirname(os.path.realpath(__file__)))
img1 = gr.Image("images/exposuper.png", elem_classes=".img.svelte-ms5bsk", elem_id="img.svelte-ms5bsk").style(container=False)
gpt = gr.Chatbot(label="Converse com GPT Super da CD2",elem_classes=".wrap.svelte-1o68geq.svelte-1o68geq", elem_id="chatbot").style(container=True)
msg = gr.Textbox(elem_id="div.svelte-awbtu4",elem_classes="div.svelte-awbtu4", show_label=False,
placeholder="Bem vindo ao ExpoSuper, Qual sua pergunta?",
).style(container=True)
# clear = gr.Button("Limpar Conversa")
# gr.Audio(source="microphone", type="filepath",label="ESTÁ COM DIFICULDADES EM ESCREVER? CLIQUE E ME DIGA O QUE DESEJA")
def respond(message, chat_history):
chat_history.append((message, chatbot(message)))
time.sleep(1)
realPath = str(os.path.dirname(os.path.realpath(__file__)))
return "", chat_history
# clear.click(lambda:None, None, gpt, queue=False,)
msg.submit(respond, [msg, gpt], [msg,gpt])
index = construct_index("docs")
demo.launch()
|