import os import gradio as gr from openai import OpenAI from typing import List, Tuple ENDPOINT_URL = "https://api.hyperbolic.xyz/v1" OAI_API_KEY = os.getenv('HYPERBOLIC_XYZ_KEY') client = OpenAI(base_url=ENDPOINT_URL,api_key=OAI_API_KEY) def respond( message: str, history: List[Tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): # Prepare the conversation history messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) # Add the latest user message messages.append({"role": "user", "content": message}) # Stream the response from OpenAI response = "" for chunk in client.chat.completions.create( model="gpt-4", # or "gpt-3.5-turbo" messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ): token = chunk.choices[0].delta.content or "" response += token yield response # Gradio ChatInterface with additional inputs for customization demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()