Spaces:
Running
Running
import os | |
import gradio as gr | |
from openai import OpenAI | |
from typing import List, Tuple | |
ENDPOINT_URL = "https://api.hyperbolic.xyz/v1" | |
OAI_API_KEY = os.getenv('HYPERBOLIC_XYZ_KEY') | |
client = OpenAI(base_url=ENDPOINT_URL,api_key=OAI_API_KEY) | |
def respond( | |
message: str, | |
history: List[Tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
# Prepare the conversation history | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
# Add the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Stream the response from OpenAI | |
response = "" | |
for chunk in client.chat.completions.create( | |
model="deepseek-ai/DeepSeek-V3", | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=True, | |
): | |
token = chunk.choices[0].delta.content or "" | |
response += token | |
yield response | |
# Gradio ChatInterface with additional inputs for customization | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |