test / app.py
BorderCollieWei's picture
Update app.py
57fc729 verified
raw
history blame
1.74 kB
# -*- coding: utf-8 -*-
"""Hugging Face Space App with INT8 Quantization"""
import os
import gradio as gr
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM
# 登錄 Hugging Face,使用訪問令牌進行身份驗證
HF_TOKEN = os.getenv("HF_TOKEN") # 從環境變數中獲取訪問令牌
if not HF_TOKEN:
raise ValueError(
"未找到 Hugging Face 訪問令牌!請設置環境變數 'HF_TOKEN',或者直接提供有效的訪問令牌。"
)
login(HF_TOKEN) # 使用訪問令牌進行身份驗證
# 加載量化的 Llama-2-13b-chat-hf 模型
MODEL_NAME = "meta-llama/Llama-2-13b-chat-hf"
# 啟用量化選項
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto", # 自動分配設備(CPU/GPU)
load_in_8bit=True, # 啟用 INT8 量化
use_auth_token=HF_TOKEN # 使用 Hugging Face 訪問令牌
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_auth_token=HF_TOKEN)
# 定義推理函數
def generate_text(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
inputs.input_ids,
max_length=200,
num_beams=5,
repetition_penalty=1.2,
early_stopping=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# 使用 Gradio 構建界面
interface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(lines=5, placeholder="Enter your prompt here..."),
outputs="text",
title="Llama 2 Text Generator (INT8 Quantized)",
description="Generate text using the INT8-quantized Llama-2-13b-chat-hf model hosted on Hugging Face Spaces."
)
# 啟動應用
if __name__ == "__main__":
interface.launch()