Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
import PyPDF2 | |
# Load the model | |
chatbot = pipeline("text-generation", model="facebook/blenderbot-400M-distill") | |
# Function to read PDF | |
def read_pdf(file_path): | |
with open(file_path, "rb") as file: | |
reader = PyPDF2.PdfReader(file) | |
text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()]) | |
return text | |
# Load syllabus | |
syllabus_text = read_pdf("syllabus.pdf") | |
print("Syllabus Loaded Successfully!") | |
def chat_response(message): | |
if "syllabus" in message.lower(): # Check if user asks about syllabus | |
return syllabus_text[:1000] + "...\n\n(Syllabus trimmed, ask for specific topics.)" | |
else: | |
response = chatbot(message, max_length=100, do_sample=True) | |
return response[0]['generated_text'] | |
# Create Gradio interface | |
iface = gr.Interface(fn=chat_response, inputs="text", outputs="text", title="Bit GPT 0.2.8") | |
# Launch app | |
iface.launch() |