Spaces:
Build error
Build error
function sign(x) { | |
return x < 0 ? -1 : 1; | |
} | |
// Calculate the slopes of the tangents (Hermite-type interpolation) based on | |
// the following paper: Steffen, M. 1990. A Simple Method for Monotonic | |
// Interpolation in One Dimension. Astronomy and Astrophysics, Vol. 239, NO. | |
// NOV(II), P. 443, 1990. | |
function slope3(that, x2, y2) { | |
var h0 = that._x1 - that._x0, | |
h1 = x2 - that._x1, | |
s0 = (that._y1 - that._y0) / (h0 || h1 < 0 && -0), | |
s1 = (y2 - that._y1) / (h1 || h0 < 0 && -0), | |
p = (s0 * h1 + s1 * h0) / (h0 + h1); | |
return (sign(s0) + sign(s1)) * Math.min(Math.abs(s0), Math.abs(s1), 0.5 * Math.abs(p)) || 0; | |
} | |
// Calculate a one-sided slope. | |
function slope2(that, t) { | |
var h = that._x1 - that._x0; | |
return h ? (3 * (that._y1 - that._y0) / h - t) / 2 : t; | |
} | |
// According to https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Representations | |
// "you can express cubic Hermite interpolation in terms of cubic Bézier curves | |
// with respect to the four values p0, p0 + m0 / 3, p1 - m1 / 3, p1". | |
function point(that, t0, t1) { | |
var x0 = that._x0, | |
y0 = that._y0, | |
x1 = that._x1, | |
y1 = that._y1, | |
dx = (x1 - x0) / 3; | |
that._context.bezierCurveTo(x0 + dx, y0 + dx * t0, x1 - dx, y1 - dx * t1, x1, y1); | |
} | |
function MonotoneX(context) { | |
this._context = context; | |
} | |
MonotoneX.prototype = { | |
areaStart: function() { | |
this._line = 0; | |
}, | |
areaEnd: function() { | |
this._line = NaN; | |
}, | |
lineStart: function() { | |
this._x0 = this._x1 = | |
this._y0 = this._y1 = | |
this._t0 = NaN; | |
this._point = 0; | |
}, | |
lineEnd: function() { | |
switch (this._point) { | |
case 2: this._context.lineTo(this._x1, this._y1); break; | |
case 3: point(this, this._t0, slope2(this, this._t0)); break; | |
} | |
if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath(); | |
this._line = 1 - this._line; | |
}, | |
point: function(x, y) { | |
var t1 = NaN; | |
x = +x, y = +y; | |
if (x === this._x1 && y === this._y1) return; // Ignore coincident points. | |
switch (this._point) { | |
case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break; | |
case 1: this._point = 2; break; | |
case 2: this._point = 3; point(this, slope2(this, t1 = slope3(this, x, y)), t1); break; | |
default: point(this, this._t0, t1 = slope3(this, x, y)); break; | |
} | |
this._x0 = this._x1, this._x1 = x; | |
this._y0 = this._y1, this._y1 = y; | |
this._t0 = t1; | |
} | |
} | |
function MonotoneY(context) { | |
this._context = new ReflectContext(context); | |
} | |
(MonotoneY.prototype = Object.create(MonotoneX.prototype)).point = function(x, y) { | |
MonotoneX.prototype.point.call(this, y, x); | |
}; | |
function ReflectContext(context) { | |
this._context = context; | |
} | |
ReflectContext.prototype = { | |
moveTo: function(x, y) { this._context.moveTo(y, x); }, | |
closePath: function() { this._context.closePath(); }, | |
lineTo: function(x, y) { this._context.lineTo(y, x); }, | |
bezierCurveTo: function(x1, y1, x2, y2, x, y) { this._context.bezierCurveTo(y1, x1, y2, x2, y, x); } | |
}; | |
export function monotoneX(context) { | |
return new MonotoneX(context); | |
} | |
export function monotoneY(context) { | |
return new MonotoneY(context); | |
} | |