|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from transformers import PreTrainedModel, PretrainedConfig
|
|
|
|
|
|
class BaseVAE(nn.Module):
|
|
def __init__(self, latent_dim=16):
|
|
super(BaseVAE, self).__init__()
|
|
self.latent_dim = latent_dim
|
|
|
|
self.encoder = nn.Sequential(
|
|
nn.Conv2d(3, 32, 4, 2, 1),
|
|
nn.BatchNorm2d(32),
|
|
nn.ReLU(),
|
|
nn.Conv2d(32, 64, 4, 2, 1),
|
|
nn.BatchNorm2d(64),
|
|
nn.ReLU(),
|
|
nn.Conv2d(64, 128, 4, 2, 1),
|
|
nn.BatchNorm2d(128),
|
|
nn.ReLU(),
|
|
nn.Flatten()
|
|
)
|
|
self.fc_mu = nn.Linear(128 * 4 * 4, latent_dim)
|
|
self.fc_logvar = nn.Linear(128 * 4 * 4, latent_dim)
|
|
|
|
self.decoder_input = nn.Linear(latent_dim, 128 * 4 * 4)
|
|
self.decoder = nn.Sequential(
|
|
nn.ConvTranspose2d(128, 64, 4, 2, 1),
|
|
nn.BatchNorm2d(64),
|
|
nn.ReLU(),
|
|
nn.ConvTranspose2d(64, 32, 4, 2, 1),
|
|
nn.BatchNorm2d(32),
|
|
nn.ReLU(),
|
|
nn.ConvTranspose2d(32, 3, 4, 2, 1),
|
|
nn.Sigmoid()
|
|
)
|
|
|
|
def encode(self, x):
|
|
x = self.encoder(x)
|
|
mu = self.fc_mu(x)
|
|
logvar = self.fc_logvar(x)
|
|
return mu, logvar
|
|
|
|
def reparameterize(self, mu, logvar):
|
|
std = torch.exp(0.5 * logvar)
|
|
eps = torch.randn_like(std)
|
|
return mu + eps * std
|
|
|
|
def decode(self, z):
|
|
x = self.decoder_input(z)
|
|
x = x.view(-1, 128, 4, 4)
|
|
return self.decoder(x)
|
|
|
|
def forward(self, x):
|
|
mu, logvar = self.encode(x)
|
|
z = self.reparameterize(mu, logvar)
|
|
recon = self.decode(z)
|
|
return recon, mu, logvar
|
|
|
|
class VAEConfig(PretrainedConfig):
|
|
model_type = "vae"
|
|
|
|
def __init__(self, latent_dim=16, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.latent_dim = latent_dim
|
|
|
|
class VAEModel(PreTrainedModel):
|
|
config_class = VAEConfig
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.vae = BaseVAE(latent_dim=config.latent_dim)
|
|
self.post_init()
|
|
|
|
def forward(self, x):
|
|
return self.vae(x)
|
|
|
|
def encode(self, x):
|
|
return self.vae.encode(x)
|
|
|
|
def decode(self, z):
|
|
return self.vae.decode(z)
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model = VAEModel.from_pretrained("BioMike/emoji-vae-init").to(device)
|
|
model.eval()
|
|
|