|
import torch
|
|
import gradio as gr
|
|
from torchvision import transforms
|
|
from PIL import Image
|
|
from model import model
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
latent_dim = model.config.latent_dim
|
|
|
|
def generate_from_noise():
|
|
z = torch.randn(1, latent_dim).to(device)
|
|
with torch.no_grad():
|
|
generated = model.decode(z)
|
|
gen_img = generated.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
|
gen_pil = Image.fromarray((gen_img * 255).astype("uint8")).resize((512, 512))
|
|
return gen_pil
|
|
|
|
def get_interface():
|
|
with gr.Blocks() as iface:
|
|
gr.Markdown("## Generate from Random Noise")
|
|
generate_button = gr.Button("Generate Image")
|
|
output_image = gr.Image(label="Generated Image", type="pil")
|
|
generate_button.click(fn=generate_from_noise, inputs=[], outputs=output_image)
|
|
|
|
examples = [[]]
|
|
|
|
gr.Examples(
|
|
examples=examples,
|
|
inputs=[],
|
|
outputs=output_image,
|
|
fn=generate_from_noise,
|
|
cache_examples=False
|
|
)
|
|
return iface
|
|
|