|
import torch
|
|
import gradio as gr
|
|
from torchvision import transforms
|
|
from PIL import Image
|
|
import numpy as np
|
|
from model import model
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
resize_input = transforms.Resize((32, 32))
|
|
to_tensor = transforms.ToTensor()
|
|
|
|
def reconstruct_image(image):
|
|
image = Image.fromarray(image).convert('RGB')
|
|
image_32 = resize_input(image)
|
|
image_tensor = to_tensor(image_32).unsqueeze(0).to(device)
|
|
with torch.no_grad():
|
|
mu, _ = model.encode(image_tensor)
|
|
recon = model.decode(mu)
|
|
recon_np = recon.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
|
recon_img = Image.fromarray((recon_np * 255).astype(np.uint8)).resize((512, 512))
|
|
orig_resized = image_32.resize((512, 512))
|
|
return orig_resized, recon_img
|
|
|
|
def get_interface():
|
|
with gr.Blocks() as iface:
|
|
gr.Markdown("## Encoding & Reconstruction")
|
|
with gr.Row():
|
|
input_image = gr.Image(label="Input (Downsampled to 32x32)", type="numpy")
|
|
output_image = gr.Image(label="Reconstructed", type="pil")
|
|
run_button = gr.Button("Run Reconstruction")
|
|
|
|
run_button.click(fn=reconstruct_image, inputs=input_image, outputs=[input_image, output_image])
|
|
|
|
examples = [
|
|
["example_images/image1.jpg"],
|
|
["example_images/image2.jpg"],
|
|
["example_images/image3.jpg"],
|
|
["example_images/image10.jpg"],
|
|
["example_images/image4.jpg"],
|
|
["example_images/image5.jpg"],
|
|
["example_images/image6.jpg"],
|
|
["example_images/image7.jpg"],
|
|
["example_images/image8.jpg"],
|
|
]
|
|
|
|
gr.Examples(
|
|
examples=examples,
|
|
inputs=[input_image],
|
|
)
|
|
return iface
|
|
|