# Access site: https://binkhoale1812-interview-ai.hf.space/ import os import tempfile import psutil from pathlib import Path from typing import Dict from fastapi import FastAPI, File, UploadFile, HTTPException from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse, FileResponse from fastapi.staticfiles import StaticFiles import google.generativeai as genai from transformers import pipeline, AutoProcessor, AutoModelForSpeechSeq2Seq ############################################ # ── Configuration ──────────────────────── ############################################ GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") if not GEMINI_API_KEY: raise RuntimeError("GEMINI_API_KEY environment variable must be set!") # Tiny Whisper model is light enough for CPU Spaces; change if GPU is available ASR_MODEL_ID = "openai/whisper-tiny" # ~39 MB ASR_LANGUAGE = "en" # Force to English for interview setting ############################################ # ── FastAPI App ─────────────────────────── ############################################ app = FastAPI(title="Interview Q&A Assistant", docs_url="/docs") app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"], ) # Serve frontend assets app.mount("/statics", StaticFiles(directory="statics"), name="statics") ############################################ # ── Global objects (lazy‑loaded) ────────── ############################################ asr_pipeline = None # Speech‑to‑text llm = None # Gemini model @app.on_event("startup") async def load_models(): """Load Whisper.""" global asr_pipeline, llm # Whisper tiny – seq2seq pipeline asr_pipeline = pipeline( "automatic-speech-recognition", model=ASR_MODEL_ID, chunk_length_s=30, torch_dtype="auto", device="cpu", ) ############################################ # ── Helpers ─────────────────────────────── ############################################ def build_prompt(question: str) -> str: """Craft a prompt that elicits concise, structured answers.""" return ( "You are a helpful career‑coach AI. Answer the following interview " "question clearly and concisely, offering practical insights when " "appropriate.\n\n" f"Interview question: \"{question}\"" ) def memory_usage_mb() -> float: return psutil.Process().memory_info().rss / 1_048_576 # bytes→MiB ############################################ # ── Routes ──────────────────────────────── ############################################ @app.get("/") async def root() -> FileResponse: """Serve the single‑page app.""" return FileResponse(Path("statics/index.html")) @app.post("/voice-transcribe") async def voice_transcribe(file: UploadFile = File(...)): # noqa: B008 """Receive audio, transcribe, push to Gemini, return answer.""" if file.content_type not in {"audio/wav", "audio/x-wav", "audio/mpeg"}: raise HTTPException(status_code=415, detail="Unsupported audio type") # Save to a temp file (Whisper expects a filename/bytes) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: tmp.write(await file.read()) tmp_path = tmp.name try: # ── 1. Transcribe transcript: Dict = asr_pipeline(tmp_path, generate_kwargs={"language": ASR_LANGUAGE}) question = transcript["text"].strip() if not question: raise ValueError("Empty transcription") # ── 2. LLM answer prompt = build_prompt(question) # Gemini Flash 2.5 – tuned for short latency client = genai.Client(api_key=GEMINI_API_KEY) response = client.models.generate_content( model="gemini-2.5-flash-preview-04-17", contents=prompt ) answer = response.text.strip() return JSONResponse( { "question": question, "answer": answer, "memory_mb": round(memory_usage_mb(), 1), } ) finally: os.remove(tmp_path) # Rm audio when done