Spaces:
Running
Running
File size: 6,062 Bytes
e7b1e22 4cb647e e7b1e22 4cb647e 5942210 e7b1e22 4cb647e e7b1e22 4cb647e 5bb4004 e7b1e22 fa605c6 4cb647e e7b1e22 20efc7b e7b1e22 4cb647e f1e695a 4cb647e e7b1e22 20efc7b e7b1e22 20efc7b e7b1e22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# Access site: https://binkhoale1812-interview-ai.hf.space/
import os
import tempfile
from pathlib import Path
from typing import Dict
# Server
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, FileResponse
from fastapi.staticfiles import StaticFiles
# AI + LLM
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import torch
import soundfile as sf
from google import genai
from google.genai import types
############################################
# ── Configuration ────────────────────────
############################################
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not GEMINI_API_KEY:
raise RuntimeError("GEMINI_API_KEY environment variable must be set!")
# Tiny Whisper model is light enough for CPU Spaces; change if GPU is available
ASR_MODEL_ID = "openai/whisper-tiny" # ~39 MB
ASR_LANGUAGE = "en" # Force to English for interview setting
############################################
# ── FastAPI App ───────────────────────────
############################################
app = FastAPI(title="Interview Q&A Assistant", docs_url="/docs")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
# Serve frontend assets
app.mount("/statics", StaticFiles(directory="statics"), name="statics")
############################################
# ── Global objects (lazy‑loaded) ──────────
############################################
# Globals
processor = None
model = None
@app.on_event("startup")
async def load_models():
global processor, model
cache_path = Path("model_cache") # local writable path inside Hugging Face Space
processor = WhisperProcessor.from_pretrained(ASR_MODEL_ID, cache_dir=cache_path)
model = WhisperForConditionalGeneration.from_pretrained(ASR_MODEL_ID, cache_dir=cache_path)
model.to("cpu")
############################################
# ── Helpers ───────────────────────────────
############################################
def build_prompt(question: str) -> str:
"""Craft a prompt that elicits concise, structured answers."""
return (
"You are a helpful career‑coach AI. Answer the following interview "
"question clearly and concisely, offering practical insights when "
"appropriate.\n\n"
f"Interview question: \"{question}\""
)
def memory_usage_mb() -> float:
return psutil.Process().memory_info().rss / 1_048_576 # bytes→MiB
# Enable Logging for Debugging
import logging
# Set up app-specific logger
logger = logging.getLogger("triage-response")
logger.setLevel(logging.INFO) # Set to DEBUG only when needed
# Set log format
formatter = logging.Formatter("[%(levelname)s] %(asctime)s - %(message)s")
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
# Suppress noisy libraries like pymongo, urllib3, etc.
for noisy in ["pymongo", "urllib3", "httpx", "uvicorn", "uvicorn.error", "uvicorn.access"]:
logging.getLogger(noisy).setLevel(logging.WARNING)
# Monitor Resources Before Startup
import psutil
def check_system_resources():
memory = psutil.virtual_memory()
cpu = psutil.cpu_percent(interval=1)
disk = psutil.disk_usage("/")
# Defines log info messages
logger.info(f"🔍 System Resources - RAM: {memory.percent}%, CPU: {cpu}%, Disk: {disk.percent}%")
if memory.percent > 85:
logger.warning("⚠️ High RAM usage detected!")
if cpu > 90:
logger.warning("⚠️ High CPU usage detected!")
if disk.percent > 90:
logger.warning("⚠️ High Disk usage detected!")
check_system_resources()
############################################
# ── Routes ────────────────────────────────
############################################
@app.get("/")
async def root() -> FileResponse:
"""Serve the single‑page app."""
logger.info("[STATIC] Serving frontend")
return FileResponse(Path("statics/index.html"))
@app.post("/voice-transcribe")
async def voice_transcribe(file: UploadFile = File(...)): # noqa: B008
"""Receive audio, transcribe, push to Gemini, return answer."""
if file.content_type not in {"audio/wav", "audio/x-wav", "audio/mpeg"}:
raise HTTPException(status_code=415, detail="Unsupported audio type")
# Save to a temp file (Whisper expects a filename/bytes)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(await file.read())
tmp_path = tmp.name
try:
# ── 1. Transcribe
speech, sample_rate = sf.read(tmp_path)
inputs = processor(speech, sampling_rate=sample_rate, return_tensors="pt")
input_features = inputs["input_features"].to("cpu")
generated_ids = model.generate(input_features)
question = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
if not question:
raise ValueError("Empty transcription")
logger.info(f"[VOICE] Detected transcribe: {question}")
# ── 2. LLM answer
prompt = build_prompt(question)
# Gemini Flash 2.5 – tuned for short latency
client = genai.Client(api_key=GEMINI_API_KEY)
response = client.models.generate_content(
model="gemini-2.5-flash-preview-04-17",
contents=prompt
)
answer = response.text.strip()
logger.info(f"[LLM] Decision answer: {answer}")
return JSONResponse(
{
"question": question,
"answer": answer,
"memory_mb": round(memory_usage_mb(), 1),
}
)
finally:
os.remove(tmp_path) # Rm audio when done |