File size: 5,907 Bytes
e7b1e22
 
 
 
 
 
4cb647e
e7b1e22
 
 
 
 
4cb647e
 
 
 
5942210
 
e7b1e22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cb647e
 
 
e7b1e22
 
 
 
4cb647e
5bb4004
 
 
 
e7b1e22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa605c6
 
 
 
 
 
 
 
 
 
 
 
 
4cb647e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7b1e22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cb647e
 
 
 
 
e7b1e22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Access site: https://binkhoale1812-interview-ai.hf.space/
import os
import tempfile
from pathlib import Path
from typing import Dict

# Server
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, FileResponse
from fastapi.staticfiles import StaticFiles

# AI + LLM
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import torch
import soundfile as sf
from google import genai
from google.genai import types

############################################
# ── Configuration ────────────────────────
############################################

GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not GEMINI_API_KEY:
    raise RuntimeError("GEMINI_API_KEY environment variable must be set!")

# Tiny Whisper model is light enough for CPU Spaces; change if GPU is available
ASR_MODEL_ID = "openai/whisper-tiny"  # ~39 MB
ASR_LANGUAGE = "en"  # Force to English for interview setting

############################################
# ── FastAPI App ───────────────────────────
############################################

app = FastAPI(title="Interview Q&A Assistant", docs_url="/docs")
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)

# Serve frontend assets
app.mount("/statics", StaticFiles(directory="statics"), name="statics")

############################################
# ── Global objects (lazy‑loaded) ──────────
############################################

# Globals
processor = None
model = None


@app.on_event("startup")
async def load_models():
    global processor, model
    cache_path = Path("model_cache")  # local writable path inside Hugging Face Space
    processor = WhisperProcessor.from_pretrained(ASR_MODEL_ID, cache_dir=cache_path)
    model = WhisperForConditionalGeneration.from_pretrained(ASR_MODEL_ID, cache_dir=cache_path)
    model.to("cpu")


############################################
# ── Helpers ───────────────────────────────
############################################

def build_prompt(question: str) -> str:
    """Craft a prompt that elicits concise, structured answers."""
    return (
        "You are a helpful career‑coach AI. Answer the following interview "
        "question clearly and concisely, offering practical insights when "
        "appropriate.\n\n"
        f"Interview question: \"{question}\""
    )

def memory_usage_mb() -> float:
    return psutil.Process().memory_info().rss / 1_048_576  # bytes→MiB

# Enable Logging for Debugging
import logging
# Set up app-specific logger
logger = logging.getLogger("triage-response")
logger.setLevel(logging.INFO)  # Set to DEBUG only when needed
# Set log format
formatter = logging.Formatter("[%(levelname)s] %(asctime)s - %(message)s")
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
# Suppress noisy libraries like pymongo, urllib3, etc.
for noisy in ["pymongo", "urllib3", "httpx", "uvicorn", "uvicorn.error", "uvicorn.access"]:
    logging.getLogger(noisy).setLevel(logging.WARNING)
# Monitor Resources Before Startup
import psutil
def check_system_resources():
    memory = psutil.virtual_memory()
    cpu = psutil.cpu_percent(interval=1)
    disk = psutil.disk_usage("/")
    # Defines log info messages
    logger.info(f"🔍 System Resources - RAM: {memory.percent}%, CPU: {cpu}%, Disk: {disk.percent}%")
    if memory.percent > 85:
        logger.warning("⚠️ High RAM usage detected!")
    if cpu > 90:
        logger.warning("⚠️ High CPU usage detected!")
    if disk.percent > 90:
        logger.warning("⚠️ High Disk usage detected!")
check_system_resources()


############################################
# ── Routes ────────────────────────────────
############################################

@app.get("/")
async def root() -> FileResponse:
    """Serve the single‑page app."""
    return FileResponse(Path("statics/index.html"))


@app.post("/voice-transcribe")
async def voice_transcribe(file: UploadFile = File(...)):  # noqa: B008
    """Receive audio, transcribe, push to Gemini, return answer."""
    if file.content_type not in {"audio/wav", "audio/x-wav", "audio/mpeg"}:
        raise HTTPException(status_code=415, detail="Unsupported audio type")
    # Save to a temp file (Whisper expects a filename/bytes)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
        tmp.write(await file.read())
        tmp_path = tmp.name
    try:
        # ── 1. Transcribe
        speech, sample_rate = sf.read(tmp_path)
        inputs = processor(speech, sampling_rate=sample_rate, return_tensors="pt")
        input_ids = inputs.input_features.to("cpu")  # adjust if using GPU
        generated_ids = model.generate(input_ids)
        question = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
        if not question:
            raise ValueError("Empty transcription")
        # ── 2. LLM answer
        prompt = build_prompt(question)
        # Gemini Flash 2.5 – tuned for short latency
        client = genai.Client(api_key=GEMINI_API_KEY)
        response = client.models.generate_content(
                model="gemini-2.5-flash-preview-04-17",
                contents=prompt
            )
        answer = response.text.strip()
        return JSONResponse(
            {
                "question": question,
                "answer": answer,
                "memory_mb": round(memory_usage_mb(), 1),
            }
        )
    finally:
        os.remove(tmp_path) # Rm audio when done