Spaces:
Running
Running
File size: 6,992 Bytes
3cb4983 e7b1e22 3cb4983 5942210 e7b1e22 3cb4983 78bb61a 243b6fb 30f82a6 3cb4983 e7b1e22 3cb4983 e7b1e22 243b6fb 3cb4983 e7b1e22 3cb4983 e7b1e22 3cb4983 e7b1e22 fa605c6 243b6fb fa605c6 4cb647e 3cb4983 243b6fb 3cb4983 243b6fb 3cb4983 243b6fb 3cb4983 4cb647e 3cb4983 4a0564f e7b1e22 3cb4983 20efc7b e7b1e22 3cb4983 4a0564f e7b1e22 3cb4983 e7b1e22 3cb4983 e7b1e22 3cb4983 e7b1e22 3cb4983 243b6fb 3cb4983 4a0564f 3cb4983 e7b1e22 3cb4983 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# Interview Q&A – FastAPI backend
import base64, io, json, logging, os, tempfile
from pathlib import Path
from typing import Dict
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, FileResponse
from fastapi.staticfiles import StaticFiles
# AI / LLM
from google import genai
from google.genai import types
# ASR
import numpy as np
from pydub import AudioSegment
from transformers import WhisperProcessor, WhisperForConditionalGeneration
# Misc
from PIL import Image
##############################################################################
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not GEMINI_API_KEY:
raise RuntimeError("❌ GEMINI_API_KEY must be set as env var")
ASR_MODEL_ID = "openai/whisper-small.en"
ASR_LANGUAGE = "en"
SAMPLE_RATE = 16_000
##############################################################################
app = FastAPI(title="Interview Q&A Assistant", docs_url="/docs")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], allow_methods=["*"], allow_headers=["*"],
)
app.mount("/statics", StaticFiles(directory="statics"), name="statics")
# Enable Logging for Debugging
import psutil
import logging
# Set up app-specific logger
logger = logging.getLogger("triage-response")
logger.setLevel(logging.INFO) # Set to DEBUG only when needed
# Set log format
formatter = logging.Formatter("[%(levelname)s] %(asctime)s - %(message)s")
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
# Suppress noisy libraries like pymongo, urllib3, etc.
for noisy in ["pymongo", "urllib3", "httpx", "uvicorn", "uvicorn.error", "uvicorn.access"]:
logging.getLogger(noisy).setLevel(logging.WARNING)
# Monitor Resources Before Startup
def check_system_resources():
memory = psutil.virtual_memory()
cpu = psutil.cpu_percent(interval=1)
disk = psutil.disk_usage("/")
# Defines log info messages
logger.info(f"🔍 System Resources - RAM: {memory.percent}%, CPU: {cpu}%, Disk: {disk.percent}%")
if memory.percent > 85:
logger.warning("⚠️ High RAM usage detected!")
if cpu > 90:
logger.warning("⚠️ High CPU usage detected!")
if disk.percent > 90:
logger.warning("⚠️ High Disk usage detected!")
check_system_resources()
##############################################################################
# Global ASR (lazy-loaded)
processor = model = None
def build_prompt(question: str) -> str:
return (
"You are a helpful career-coach AI. Answer the following interview "
"question clearly and concisely (≤200 words). Use markdown when helpful.\n\n"
f"Interview question: \"{question.strip()}\""
)
def memory_mb() -> float:
return round(psutil.Process().memory_info().rss / 1_048_576, 1)
@app.on_event("startup")
async def load_models():
global processor, model
cache = Path("model_cache"); cache.mkdir(exist_ok=True)
processor = WhisperProcessor.from_pretrained(ASR_MODEL_ID, cache_dir=cache)
model = WhisperForConditionalGeneration.from_pretrained(ASR_MODEL_ID, cache_dir=cache)
forced = processor.get_decoder_prompt_ids(task="transcribe", language="english")
model.config.forced_decoder_ids = forced
model.to("cpu").eval()
logger.info("[MODEL] 🔊 Whisper loaded ✔")
@app.get("/")
async def root() -> FileResponse: # serve SPA
logger.info("[STATIC] Serving frontend")
return FileResponse(Path("statics/index.html"))
##############################################################################
# ── MAIN ENDPOINTS ──────────────────────────────────────────────────────────
def call_gemini(prompt: str, vision_parts=None) -> str:
client = genai.Client(api_key=GEMINI_API_KEY)
kwargs: Dict = {}
if vision_parts: # multimodal call
kwargs["contents"] = vision_parts + [{"text": prompt}]
else:
kwargs["contents"] = prompt
resp = client.models.generate_content(
model="gemini-2.5-flash-preview-04-17", **kwargs
)
response = resp.text.strip()
logger.info(f"[LLM] Response: {response}")
return response
@app.post("/voice-transcribe")
async def voice_transcribe(file: UploadFile = File(...)):
if file.content_type not in {"audio/wav", "audio/x-wav", "audio/mpeg"}:
raise HTTPException(415, "Unsupported audio type")
# Write temporary audio file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(await file.read()); tmp_path = tmp.name
# Audio processing and transcription
try:
seg = AudioSegment.from_file(tmp_path).set_frame_rate(SAMPLE_RATE).set_channels(1)
audio = np.array(seg.get_array_of_samples()).astype(np.float32) / (2 ** 15)
inputs = processor(audio, sampling_rate=SAMPLE_RATE, return_tensors="pt")
ids = model.generate(inputs.input_features.to(model.device))
question = processor.decode(ids[0], skip_special_tokens=True).strip()
if not question:
raise ValueError("No speech detected")
logger.info(f"[MODEL] Transcribed text: {question}")
answer = call_gemini(build_prompt(question))
return JSONResponse({"question": question, "answer": answer, "memory_mb": memory_mb()})
finally:
os.remove(tmp_path)
@app.post("/image-question")
async def image_question(file: UploadFile = File(...)):
if file.content_type not in {"image/png", "image/jpeg"}:
raise HTTPException(415, "Unsupported image type")
# Read file and decode
raw = await file.read()
b64 = base64.b64encode(raw).decode()
# Send image data
vision_part = [{
"inline_data": {
"mime_type": file.content_type,
"data": b64
}
}]
# Ask Gemini to return JSON so we can split Q & A
prompt = (
"From the screenshot extract the interview question (English). "
"Then answer concisely (≤200 words). "
"Return pure JSON: {\"question\":\"...\",\"answer\":\"...\"}"
)
# Send prompt and image
text = call_gemini(prompt, vision_part)
try:
parsed = json.loads(text)
question, answer = parsed["question"], parsed["answer"]
except (json.JSONDecodeError, KeyError):
# Fallback: treat whole reply as answer
question, answer = "[Extracted from screenshot]", text
return JSONResponse({"question": question, "answer": answer, "memory_mb": memory_mb()})
@app.post("/text-question")
async def text_question(payload: Dict):
question = (payload.get("question") or "").strip()
if not question:
raise HTTPException(400, "question is required")
answer = call_gemini(build_prompt(question))
return JSONResponse({"question": question, "answer": answer, "memory_mb": memory_mb()})
|