import gradio as gr import os import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, pipeline, AutoProcessor, MusicgenForConditionalGeneration, ) from diffusers import StableDiffusionPipeline from scipy.io.wavfile import write from pydub import AudioSegment from dotenv import load_dotenv import tempfile import spaces from TTS.api import TTS from TTS.utils.synthesizer import Synthesizer # Load environment variables load_dotenv() hf_token = os.getenv("HF_TOKEN") # --------------------------------------------------------------------- # Script Generation Function # --------------------------------------------------------------------- @spaces.GPU(duration=300) def generate_script(user_prompt: str, model_id: str, token: str, duration: int): try: tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) model = AutoModelForCausalLM.from_pretrained( model_id, use_auth_token=token, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, ) llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) # System prompt with clear structure instructions system_prompt = ( f"You are an expert radio imaging producer specializing in sound design and music. " f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: " f"1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'.\n" f"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n" f"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'." ) combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:" result = llama_pipeline(combined_prompt, max_new_tokens=300, do_sample=True, temperature=0.8) # Parsing output generated_text = result[0]["generated_text"].split("Output:")[-1].strip() # Extract sections based on prefixes voice_script = generated_text.split("Voice-Over Script:")[1].split("Sound Design Suggestions:")[0].strip() if "Voice-Over Script:" in generated_text else "No voice-over script found." sound_design = generated_text.split("Sound Design Suggestions:")[1].split("Music Suggestions:")[0].strip() if "Sound Design Suggestions:" in generated_text else "No sound design suggestions found." music_suggestions = generated_text.split("Music Suggestions:")[1].strip() if "Music Suggestions:" in generated_text else "No music suggestions found." return voice_script, sound_design, music_suggestions except Exception as e: return f"Error generating script: {e}", "", "" # --------------------------------------------------------------------- # Voice-Over Generation Function # --------------------------------------------------------------------- @spaces.GPU(duration=300) def generate_voice(script: str, speaker: str = "default"): try: # Load TTS model tts_model_path = "tts_models/en/ljspeech/tacotron2-DDC" vocoder_model_path = "vocoder_models/en/ljspeech/hifigan_v2" synthesizer = Synthesizer(tts_model_path, vocoder_model_path) # Generate audio wav = synthesizer.tts(script) # Save output to a file output_path = f"{tempfile.gettempdir()}/generated_voice.wav" synthesizer.save_wav(wav, output_path) return output_path except Exception as e: return f"Error generating voice-over: {e}" # --------------------------------------------------------------------- # Music Generation Function # --------------------------------------------------------------------- @spaces.GPU(duration=300) def generate_music(prompt: str, audio_length: int, model_choice: str): try: if model_choice == "Stable Audio Open 1.0": stable_pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-audio-open-1.0") stable_pipeline.to("cuda" if torch.cuda.is_available() else "cpu") audio = stable_pipeline(prompt, num_inference_steps=50, guidance_scale=7.5) output_path = f"{tempfile.gettempdir()}/stable_generated_music.wav" write(output_path, 44100, audio["sample"].cpu().numpy()) return output_path elif model_choice == "MusicGen": musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small") device = "cuda" if torch.cuda.is_available() else "cpu" musicgen_model.to(device) inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device) outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length) audio_data = outputs[0, 0].cpu().numpy() normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16") output_path = f"{tempfile.gettempdir()}/musicgen_generated_music.wav" write(output_path, 44100, normalized_audio) return output_path else: return "Invalid model choice!" except Exception as e: return f"Error generating music: {e}" # --------------------------------------------------------------------- # Audio Blending Function with Ducking # --------------------------------------------------------------------- def blend_audio(voice_path: str, music_path: str, ducking: bool): try: voice = AudioSegment.from_file(voice_path) music = AudioSegment.from_file(music_path) if ducking: music = music - 10 # Lower music volume for ducking combined = music.overlay(voice) output_path = f"{tempfile.gettempdir()}/final_promo.wav" combined.export(output_path, format="wav") return output_path except Exception as e: return f"Error blending audio: {e}" # --------------------------------------------------------------------- # Gradio Interface # --------------------------------------------------------------------- with gr.Blocks() as demo: gr.Markdown(""" # 🎵 AI Promo Studio 🚀 Generate scripts, sound design, and music suggestions with ease. """) with gr.Tabs(): # Step 1: Generate Script with gr.Tab("Step 1: Generate Script"): with gr.Row(): user_prompt = gr.Textbox(label="Promo Idea", placeholder="E.g., A 30-second promo for a morning show.") llama_model_id = gr.Textbox(label="Llama Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct") duration = gr.Slider(label="Duration (seconds)", minimum=15, maximum=60, step=15, value=30) generate_script_button = gr.Button("Generate Script") script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5) sound_design_output = gr.Textbox(label="Sound Design Ideas", lines=3) music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3) generate_script_button.click( fn=lambda user_prompt, model_id, duration: generate_script(user_prompt, model_id, hf_token, duration), inputs=[user_prompt, llama_model_id, duration], outputs=[script_output, sound_design_output, music_suggestion_output], ) # Step 2: Generate Voice with gr.Tab("Step 2: Generate Voice"): with gr.Row(): speaker = gr.Textbox(label="Voice Style (optional)", placeholder="E.g., male, female, or neutral.") generate_voice_button = gr.Button("Generate Voice") voice_output = gr.Audio(label="Generated Voice", type="filepath") generate_voice_button.click( fn=lambda script, speaker: generate_voice(script, speaker), inputs=[script_output, speaker], outputs=[voice_output], ) # Step 3: Generate Music with gr.Tab("Step 3: Generate Music"): with gr.Row(): audio_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512) model_choice = gr.Dropdown( label="Select Music Generation Model", choices=["Stable Audio Open 1.0", "MusicGen"], value="Stable Audio Open 1.0" ) generate_music_button = gr.Button("Generate Music") music_output = gr.Audio(label="Generated Music", type="filepath") generate_music_button.click( fn=lambda music_suggestion, audio_length, model_choice: generate_music(music_suggestion, audio_length, model_choice), inputs=[music_suggestion_output, audio_length, model_choice], outputs=[music_output], ) with gr.Tab("Step 4: Blend Audio"): with gr.Row(): ducking = gr.Checkbox(label="Enable Ducking", value=True) blend_button = gr.Button("Blend Audio") final_output = gr.Audio(label="Final Promo Audio", type="filepath") blend_button.click( fn=lambda voice_path, music_path, ducking: blend_audio(voice_path, music_path, ducking), inputs=[voice_output, music_output, ducking], outputs=[final_output], ) gr.Markdown("""

Created with ❤️ by bilsimaging.com

""") demo.launch(debug=True)