Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -39,7 +39,6 @@ def clean_text(text: str) -> str:
|
|
39 |
"""
|
40 |
Removes undesired characters (e.g., asterisks) that might not be recognized by the model's vocabulary.
|
41 |
"""
|
42 |
-
# Remove all asterisks.
|
43 |
return re.sub(r'\*', '', text)
|
44 |
|
45 |
# ---------------------------------------------------------------------
|
@@ -75,7 +74,6 @@ def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
|
75 |
|
76 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
77 |
processor = AutoProcessor.from_pretrained(model_key)
|
78 |
-
|
79 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
80 |
model.to(device)
|
81 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
@@ -105,7 +103,6 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
105 |
"""
|
106 |
try:
|
107 |
text_pipeline = get_llama_pipeline(model_id, token)
|
108 |
-
|
109 |
system_prompt = (
|
110 |
"You are an expert radio imaging producer specializing in sound design and music. "
|
111 |
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
|
@@ -114,7 +111,6 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
114 |
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
|
115 |
)
|
116 |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
|
117 |
-
|
118 |
with torch.inference_mode():
|
119 |
result = text_pipeline(
|
120 |
combined_prompt,
|
@@ -122,16 +118,13 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
122 |
do_sample=True,
|
123 |
temperature=0.8
|
124 |
)
|
125 |
-
|
126 |
generated_text = result[0]["generated_text"]
|
127 |
if "Output:" in generated_text:
|
128 |
generated_text = generated_text.split("Output:")[-1].strip()
|
129 |
-
|
130 |
# Default placeholders
|
131 |
voice_script = "No voice-over script found."
|
132 |
sound_design = "No sound design suggestions found."
|
133 |
music_suggestions = "No music suggestions found."
|
134 |
-
|
135 |
# Voice-Over Script
|
136 |
if "Voice-Over Script:" in generated_text:
|
137 |
parts = generated_text.split("Voice-Over Script:")
|
@@ -140,7 +133,6 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
140 |
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
|
141 |
else:
|
142 |
voice_script = voice_script_part.strip()
|
143 |
-
|
144 |
# Sound Design
|
145 |
if "Sound Design Suggestions:" in generated_text:
|
146 |
parts = generated_text.split("Sound Design Suggestions:")
|
@@ -149,18 +141,47 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
149 |
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
|
150 |
else:
|
151 |
sound_design = sound_design_part.strip()
|
152 |
-
|
153 |
# Music Suggestions
|
154 |
if "Music Suggestions:" in generated_text:
|
155 |
parts = generated_text.split("Music Suggestions:")
|
156 |
music_suggestions = parts[1].strip()
|
157 |
-
|
158 |
return voice_script, sound_design, music_suggestions
|
159 |
-
|
160 |
except Exception as e:
|
161 |
return f"Error generating script: {e}", "", ""
|
162 |
|
163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
# ---------------------------------------------------------------------
|
165 |
# Voice-Over Generation Function
|
166 |
# ---------------------------------------------------------------------
|
@@ -173,17 +194,11 @@ def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/ta
|
|
173 |
try:
|
174 |
if not script.strip():
|
175 |
return "Error: No script provided."
|
176 |
-
|
177 |
-
# Clean the script to remove special characters (e.g., asterisks) that may produce warnings
|
178 |
cleaned_script = clean_text(script)
|
179 |
-
|
180 |
tts_model = get_tts_model(tts_model_name)
|
181 |
-
|
182 |
-
# Generate and save voice
|
183 |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
|
184 |
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
|
185 |
return output_path
|
186 |
-
|
187 |
except Exception as e:
|
188 |
return f"Error generating voice: {e}"
|
189 |
|
@@ -200,24 +215,17 @@ def generate_music(prompt: str, audio_length: int):
|
|
200 |
try:
|
201 |
if not prompt.strip():
|
202 |
return "Error: No music suggestion provided."
|
203 |
-
|
204 |
model_key = "facebook/musicgen-large"
|
205 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
206 |
-
|
207 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
208 |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
|
209 |
-
|
210 |
with torch.inference_mode():
|
211 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
212 |
-
|
213 |
audio_data = outputs[0, 0].cpu().numpy()
|
214 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
215 |
-
|
216 |
output_path = os.path.join(tempfile.gettempdir(), "musicgen_large_generated_music.wav")
|
217 |
write(output_path, 44100, normalized_audio)
|
218 |
-
|
219 |
return output_path
|
220 |
-
|
221 |
except Exception as e:
|
222 |
return f"Error generating music: {e}"
|
223 |
|
@@ -229,42 +237,30 @@ def generate_music(prompt: str, audio_length: int):
|
|
229 |
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
|
230 |
"""
|
231 |
Blends two audio files (voice and music).
|
232 |
-
1. If music < voice, loops the music until it meets/exceeds the voice duration.
|
233 |
-
2. If music > voice, trims music to the voice duration.
|
234 |
-
3. If ducking=True, the music is attenuated by 'duck_level' dB while the voice is playing.
|
235 |
Returns the file path to the blended .wav file.
|
236 |
"""
|
237 |
try:
|
238 |
if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
|
239 |
return "Error: Missing audio files for blending."
|
240 |
-
|
241 |
voice = AudioSegment.from_wav(voice_path)
|
242 |
music = AudioSegment.from_wav(music_path)
|
243 |
-
|
244 |
-
|
245 |
-
music_len = len(music) # in milliseconds
|
246 |
-
|
247 |
-
# Loop music if it's shorter than the voice
|
248 |
if music_len < voice_len:
|
249 |
looped_music = AudioSegment.empty()
|
250 |
while len(looped_music) < voice_len:
|
251 |
looped_music += music
|
252 |
music = looped_music
|
253 |
-
|
254 |
-
# Trim music if it's longer than the voice
|
255 |
if len(music) > voice_len:
|
256 |
music = music[:voice_len]
|
257 |
-
|
258 |
if ducking:
|
259 |
ducked_music = music - duck_level
|
260 |
final_audio = ducked_music.overlay(voice)
|
261 |
else:
|
262 |
final_audio = music.overlay(voice)
|
263 |
-
|
264 |
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
|
265 |
final_audio.export(output_path, format="wav")
|
266 |
return output_path
|
267 |
-
|
268 |
except Exception as e:
|
269 |
return f"Error blending audio: {e}"
|
270 |
|
@@ -321,13 +317,36 @@ with gr.Blocks(css="""
|
|
321 |
gr.Markdown("""
|
322 |
Welcome to **AI Ads Promo (Demo MVP)**! This platform leverages state-of-the-art AI models to help you generate:
|
323 |
|
324 |
-
- **
|
|
|
325 |
- **Voice Synthesis**: Create natural-sounding voice-overs using Coqui TTS.
|
326 |
-
- **Music Production**:
|
327 |
-
- **Audio Blending**: Seamlessly
|
328 |
""")
|
329 |
|
330 |
with gr.Tabs():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
# Step 1: Generate Script
|
332 |
with gr.Tab("📝 Script Generation"):
|
333 |
with gr.Row():
|
@@ -353,7 +372,6 @@ with gr.Blocks(css="""
|
|
353 |
script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False)
|
354 |
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
355 |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
356 |
-
|
357 |
generate_script_button.click(
|
358 |
fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur),
|
359 |
inputs=[user_prompt, llama_model_id, duration],
|
@@ -375,7 +393,6 @@ with gr.Blocks(css="""
|
|
375 |
)
|
376 |
generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
|
377 |
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
378 |
-
|
379 |
generate_voice_button.click(
|
380 |
fn=lambda script, tts_model: generate_voice(script, tts_model),
|
381 |
inputs=[script_output, selected_tts_model],
|
@@ -395,7 +412,6 @@ with gr.Blocks(css="""
|
|
395 |
)
|
396 |
generate_music_button = gr.Button("Generate Music", variant="primary")
|
397 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
398 |
-
|
399 |
generate_music_button.click(
|
400 |
fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
|
401 |
inputs=[music_suggestion_output, audio_length],
|
@@ -415,7 +431,6 @@ with gr.Blocks(css="""
|
|
415 |
)
|
416 |
blend_button = gr.Button("Blend Voice + Music", variant="primary")
|
417 |
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
418 |
-
|
419 |
blend_button.click(
|
420 |
fn=blend_audio,
|
421 |
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
|
|
|
39 |
"""
|
40 |
Removes undesired characters (e.g., asterisks) that might not be recognized by the model's vocabulary.
|
41 |
"""
|
|
|
42 |
return re.sub(r'\*', '', text)
|
43 |
|
44 |
# ---------------------------------------------------------------------
|
|
|
74 |
|
75 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
76 |
processor = AutoProcessor.from_pretrained(model_key)
|
|
|
77 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
78 |
model.to(device)
|
79 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
|
|
103 |
"""
|
104 |
try:
|
105 |
text_pipeline = get_llama_pipeline(model_id, token)
|
|
|
106 |
system_prompt = (
|
107 |
"You are an expert radio imaging producer specializing in sound design and music. "
|
108 |
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
|
|
|
111 |
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
|
112 |
)
|
113 |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
|
|
|
114 |
with torch.inference_mode():
|
115 |
result = text_pipeline(
|
116 |
combined_prompt,
|
|
|
118 |
do_sample=True,
|
119 |
temperature=0.8
|
120 |
)
|
|
|
121 |
generated_text = result[0]["generated_text"]
|
122 |
if "Output:" in generated_text:
|
123 |
generated_text = generated_text.split("Output:")[-1].strip()
|
|
|
124 |
# Default placeholders
|
125 |
voice_script = "No voice-over script found."
|
126 |
sound_design = "No sound design suggestions found."
|
127 |
music_suggestions = "No music suggestions found."
|
|
|
128 |
# Voice-Over Script
|
129 |
if "Voice-Over Script:" in generated_text:
|
130 |
parts = generated_text.split("Voice-Over Script:")
|
|
|
133 |
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
|
134 |
else:
|
135 |
voice_script = voice_script_part.strip()
|
|
|
136 |
# Sound Design
|
137 |
if "Sound Design Suggestions:" in generated_text:
|
138 |
parts = generated_text.split("Sound Design Suggestions:")
|
|
|
141 |
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
|
142 |
else:
|
143 |
sound_design = sound_design_part.strip()
|
|
|
144 |
# Music Suggestions
|
145 |
if "Music Suggestions:" in generated_text:
|
146 |
parts = generated_text.split("Music Suggestions:")
|
147 |
music_suggestions = parts[1].strip()
|
|
|
148 |
return voice_script, sound_design, music_suggestions
|
|
|
149 |
except Exception as e:
|
150 |
return f"Error generating script: {e}", "", ""
|
151 |
|
152 |
|
153 |
+
# ---------------------------------------------------------------------
|
154 |
+
# Ad Promo Idea Generation Function
|
155 |
+
# ---------------------------------------------------------------------
|
156 |
+
@spaces.GPU(duration=100)
|
157 |
+
def generate_ad_promo_idea(user_prompt: str, model_id: str, token: str):
|
158 |
+
"""
|
159 |
+
Generates a creative ad promo idea based on the user's concept.
|
160 |
+
Returns a string containing the ad promo idea.
|
161 |
+
"""
|
162 |
+
try:
|
163 |
+
text_pipeline = get_llama_pipeline(model_id, token)
|
164 |
+
system_prompt = (
|
165 |
+
"You are a creative advertising strategist. "
|
166 |
+
"Generate a unique and engaging ad promo idea based on the following concept. "
|
167 |
+
"Include creative angles, potential taglines, and media suggestions."
|
168 |
+
)
|
169 |
+
combined_prompt = f"{system_prompt}\nConcept: {user_prompt}\nAd Promo Idea:"
|
170 |
+
with torch.inference_mode():
|
171 |
+
result = text_pipeline(
|
172 |
+
combined_prompt,
|
173 |
+
max_new_tokens=150,
|
174 |
+
do_sample=True,
|
175 |
+
temperature=0.8
|
176 |
+
)
|
177 |
+
generated_text = result[0]["generated_text"]
|
178 |
+
if "Ad Promo Idea:" in generated_text:
|
179 |
+
generated_text = generated_text.split("Ad Promo Idea:")[-1].strip()
|
180 |
+
return generated_text
|
181 |
+
except Exception as e:
|
182 |
+
return f"Error generating ad promo idea: {e}"
|
183 |
+
|
184 |
+
|
185 |
# ---------------------------------------------------------------------
|
186 |
# Voice-Over Generation Function
|
187 |
# ---------------------------------------------------------------------
|
|
|
194 |
try:
|
195 |
if not script.strip():
|
196 |
return "Error: No script provided."
|
|
|
|
|
197 |
cleaned_script = clean_text(script)
|
|
|
198 |
tts_model = get_tts_model(tts_model_name)
|
|
|
|
|
199 |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
|
200 |
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
|
201 |
return output_path
|
|
|
202 |
except Exception as e:
|
203 |
return f"Error generating voice: {e}"
|
204 |
|
|
|
215 |
try:
|
216 |
if not prompt.strip():
|
217 |
return "Error: No music suggestion provided."
|
|
|
218 |
model_key = "facebook/musicgen-large"
|
219 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
|
|
220 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
221 |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
|
|
|
222 |
with torch.inference_mode():
|
223 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
|
|
224 |
audio_data = outputs[0, 0].cpu().numpy()
|
225 |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
|
|
226 |
output_path = os.path.join(tempfile.gettempdir(), "musicgen_large_generated_music.wav")
|
227 |
write(output_path, 44100, normalized_audio)
|
|
|
228 |
return output_path
|
|
|
229 |
except Exception as e:
|
230 |
return f"Error generating music: {e}"
|
231 |
|
|
|
237 |
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
|
238 |
"""
|
239 |
Blends two audio files (voice and music).
|
|
|
|
|
|
|
240 |
Returns the file path to the blended .wav file.
|
241 |
"""
|
242 |
try:
|
243 |
if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
|
244 |
return "Error: Missing audio files for blending."
|
|
|
245 |
voice = AudioSegment.from_wav(voice_path)
|
246 |
music = AudioSegment.from_wav(music_path)
|
247 |
+
voice_len = len(voice)
|
248 |
+
music_len = len(music)
|
|
|
|
|
|
|
249 |
if music_len < voice_len:
|
250 |
looped_music = AudioSegment.empty()
|
251 |
while len(looped_music) < voice_len:
|
252 |
looped_music += music
|
253 |
music = looped_music
|
|
|
|
|
254 |
if len(music) > voice_len:
|
255 |
music = music[:voice_len]
|
|
|
256 |
if ducking:
|
257 |
ducked_music = music - duck_level
|
258 |
final_audio = ducked_music.overlay(voice)
|
259 |
else:
|
260 |
final_audio = music.overlay(voice)
|
|
|
261 |
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
|
262 |
final_audio.export(output_path, format="wav")
|
263 |
return output_path
|
|
|
264 |
except Exception as e:
|
265 |
return f"Error blending audio: {e}"
|
266 |
|
|
|
317 |
gr.Markdown("""
|
318 |
Welcome to **AI Ads Promo (Demo MVP)**! This platform leverages state-of-the-art AI models to help you generate:
|
319 |
|
320 |
+
- **Ad Promo Ideas**: Generate creative ad concepts.
|
321 |
+
- **Script**: Produce a compelling voice-over script with LLaMA.
|
322 |
- **Voice Synthesis**: Create natural-sounding voice-overs using Coqui TTS.
|
323 |
+
- **Music Production**: Generate custom music tracks with MusicGen.
|
324 |
+
- **Audio Blending**: Seamlessly combine voice and music with ducking options.
|
325 |
""")
|
326 |
|
327 |
with gr.Tabs():
|
328 |
+
# New Tab: Generate Ad Promo Idea
|
329 |
+
with gr.Tab("💡 Ad Promo Idea"):
|
330 |
+
with gr.Row():
|
331 |
+
ad_concept = gr.Textbox(
|
332 |
+
label="Ad Concept",
|
333 |
+
placeholder="Enter your ad concept or idea...",
|
334 |
+
lines=2
|
335 |
+
)
|
336 |
+
with gr.Row():
|
337 |
+
llama_model_id_idea = gr.Textbox(
|
338 |
+
label="LLaMA Model ID",
|
339 |
+
value="meta-llama/Meta-Llama-3-8B-Instruct",
|
340 |
+
placeholder="Enter a valid Hugging Face model ID"
|
341 |
+
)
|
342 |
+
generate_ad_idea_button = gr.Button("Generate Ad Promo Idea", variant="primary")
|
343 |
+
ad_idea_output = gr.Textbox(label="Generated Ad Promo Idea", lines=5, interactive=False)
|
344 |
+
generate_ad_idea_button.click(
|
345 |
+
fn=lambda concept, model_id: generate_ad_promo_idea(concept, model_id, HF_TOKEN),
|
346 |
+
inputs=[ad_concept, llama_model_id_idea],
|
347 |
+
outputs=ad_idea_output
|
348 |
+
)
|
349 |
+
|
350 |
# Step 1: Generate Script
|
351 |
with gr.Tab("📝 Script Generation"):
|
352 |
with gr.Row():
|
|
|
372 |
script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False)
|
373 |
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
|
374 |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
|
|
375 |
generate_script_button.click(
|
376 |
fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur),
|
377 |
inputs=[user_prompt, llama_model_id, duration],
|
|
|
393 |
)
|
394 |
generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
|
395 |
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
|
|
|
396 |
generate_voice_button.click(
|
397 |
fn=lambda script, tts_model: generate_voice(script, tts_model),
|
398 |
inputs=[script_output, selected_tts_model],
|
|
|
412 |
)
|
413 |
generate_music_button = gr.Button("Generate Music", variant="primary")
|
414 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
|
|
415 |
generate_music_button.click(
|
416 |
fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
|
417 |
inputs=[music_suggestion_output, audio_length],
|
|
|
431 |
)
|
432 |
blend_button = gr.Button("Blend Voice + Music", variant="primary")
|
433 |
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
|
|
|
434 |
blend_button.click(
|
435 |
fn=blend_audio,
|
436 |
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
|