Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
import re
|
3 |
import torch
|
4 |
import tempfile
|
|
|
5 |
from scipy.io.wavfile import write
|
6 |
from pydub import AudioSegment
|
7 |
from dotenv import load_dotenv
|
@@ -20,8 +21,9 @@ from transformers import (
|
|
20 |
from TTS.api import TTS
|
21 |
|
22 |
# ---------------------------------------------------------------------
|
23 |
-
#
|
24 |
# ---------------------------------------------------------------------
|
|
|
25 |
load_dotenv()
|
26 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
27 |
|
@@ -39,15 +41,14 @@ def clean_text(text: str) -> str:
|
|
39 |
"""
|
40 |
Removes undesired characters (e.g., asterisks) that might not be recognized by the model's vocabulary.
|
41 |
"""
|
42 |
-
# Remove all asterisks. You can add more cleaning steps here as needed.
|
43 |
return re.sub(r'\*', '', text)
|
44 |
|
45 |
# ---------------------------------------------------------------------
|
46 |
-
# Helper Functions
|
47 |
# ---------------------------------------------------------------------
|
48 |
def get_llama_pipeline(model_id: str, token: str):
|
49 |
"""
|
50 |
-
Returns a cached LLaMA pipeline if available; otherwise, loads it.
|
51 |
"""
|
52 |
if model_id in LLAMA_PIPELINES:
|
53 |
return LLAMA_PIPELINES[model_id]
|
@@ -67,7 +68,7 @@ def get_llama_pipeline(model_id: str, token: str):
|
|
67 |
|
68 |
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
69 |
"""
|
70 |
-
Returns a cached MusicGen model if available; otherwise, loads
|
71 |
Uses the 'large' variant for higher quality outputs.
|
72 |
"""
|
73 |
if model_key in MUSICGEN_MODELS:
|
@@ -75,7 +76,6 @@ def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
|
75 |
|
76 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
77 |
processor = AutoProcessor.from_pretrained(model_key)
|
78 |
-
|
79 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
80 |
model.to(device)
|
81 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
@@ -84,7 +84,7 @@ def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
|
84 |
|
85 |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
86 |
"""
|
87 |
-
Returns a cached TTS model if available; otherwise, loads it.
|
88 |
"""
|
89 |
if model_name in TTS_MODELS:
|
90 |
return TTS_MODELS[model_name]
|
@@ -100,18 +100,18 @@ def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
|
100 |
@spaces.GPU(duration=100)
|
101 |
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
102 |
"""
|
103 |
-
Generates a script, sound design suggestions, and music ideas from a user prompt.
|
104 |
-
Returns a tuple
|
105 |
"""
|
106 |
try:
|
107 |
text_pipeline = get_llama_pipeline(model_id, token)
|
108 |
|
109 |
system_prompt = (
|
110 |
"You are an expert radio imaging producer specializing in sound design and music. "
|
111 |
-
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following
|
112 |
-
"1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'
|
113 |
-
"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'
|
114 |
-
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'
|
115 |
)
|
116 |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
|
117 |
|
@@ -127,37 +127,20 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
127 |
if "Output:" in generated_text:
|
128 |
generated_text = generated_text.split("Output:")[-1].strip()
|
129 |
|
130 |
-
#
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
if "Sound Design Suggestions:" in voice_script_part:
|
140 |
-
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
|
141 |
-
else:
|
142 |
-
voice_script = voice_script_part.strip()
|
143 |
-
|
144 |
-
# Sound Design
|
145 |
-
if "Sound Design Suggestions:" in generated_text:
|
146 |
-
parts = generated_text.split("Sound Design Suggestions:")
|
147 |
-
sound_design_part = parts[1]
|
148 |
-
if "Music Suggestions:" in sound_design_part:
|
149 |
-
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
|
150 |
-
else:
|
151 |
-
sound_design = sound_design_part.strip()
|
152 |
-
|
153 |
-
# Music Suggestions
|
154 |
-
if "Music Suggestions:" in generated_text:
|
155 |
-
parts = generated_text.split("Music Suggestions:")
|
156 |
-
music_suggestions = parts[1].strip()
|
157 |
|
158 |
return voice_script, sound_design, music_suggestions
|
159 |
|
160 |
except Exception as e:
|
|
|
161 |
return f"Error generating script: {e}", "", ""
|
162 |
|
163 |
|
@@ -167,24 +150,22 @@ def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
|
167 |
@spaces.GPU(duration=100)
|
168 |
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
169 |
"""
|
170 |
-
Generates a voice-over from the provided script using
|
171 |
Returns the file path to the generated .wav file.
|
172 |
"""
|
173 |
try:
|
174 |
if not script.strip():
|
175 |
return "Error: No script provided."
|
176 |
|
177 |
-
# Clean the script to remove special characters (e.g., asterisks) that may produce warnings
|
178 |
cleaned_script = clean_text(script)
|
179 |
-
|
180 |
tts_model = get_tts_model(tts_model_name)
|
181 |
|
182 |
-
# Generate and save voice
|
183 |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
|
184 |
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
|
185 |
return output_path
|
186 |
|
187 |
except Exception as e:
|
|
|
188 |
return f"Error generating voice: {e}"
|
189 |
|
190 |
|
@@ -194,7 +175,7 @@ def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/ta
|
|
194 |
@spaces.GPU(duration=200)
|
195 |
def generate_music(prompt: str, audio_length: int):
|
196 |
"""
|
197 |
-
Generates music from the 'facebook/musicgen-large' model based on the prompt.
|
198 |
Returns the file path to the generated .wav file.
|
199 |
"""
|
200 |
try:
|
@@ -203,10 +184,9 @@ def generate_music(prompt: str, audio_length: int):
|
|
203 |
|
204 |
model_key = "facebook/musicgen-large"
|
205 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
206 |
-
|
207 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
208 |
-
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
|
209 |
|
|
|
210 |
with torch.inference_mode():
|
211 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
212 |
|
@@ -219,6 +199,7 @@ def generate_music(prompt: str, audio_length: int):
|
|
219 |
return output_path
|
220 |
|
221 |
except Exception as e:
|
|
|
222 |
return f"Error generating music: {e}"
|
223 |
|
224 |
|
@@ -229,9 +210,9 @@ def generate_music(prompt: str, audio_length: int):
|
|
229 |
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
|
230 |
"""
|
231 |
Blends two audio files (voice and music).
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
Returns the file path to the blended .wav file.
|
236 |
"""
|
237 |
try:
|
@@ -242,18 +223,16 @@ def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int
|
|
242 |
music = AudioSegment.from_wav(music_path)
|
243 |
|
244 |
voice_len = len(voice) # in milliseconds
|
245 |
-
music_len = len(music) # in milliseconds
|
246 |
|
247 |
-
# Loop music if it's shorter than
|
248 |
-
if
|
249 |
looped_music = AudioSegment.empty()
|
250 |
while len(looped_music) < voice_len:
|
251 |
looped_music += music
|
252 |
music = looped_music
|
253 |
|
254 |
-
# Trim music
|
255 |
-
|
256 |
-
music = music[:voice_len]
|
257 |
|
258 |
if ducking:
|
259 |
ducked_music = music - duck_level
|
@@ -266,11 +245,12 @@ def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int
|
|
266 |
return output_path
|
267 |
|
268 |
except Exception as e:
|
|
|
269 |
return f"Error blending audio: {e}"
|
270 |
|
271 |
|
272 |
# ---------------------------------------------------------------------
|
273 |
-
# Gradio Interface with Enhanced UI
|
274 |
# ---------------------------------------------------------------------
|
275 |
with gr.Blocks(css="""
|
276 |
/* Global Styles */
|
@@ -314,26 +294,26 @@ with gr.Blocks(css="""
|
|
314 |
# Custom Header
|
315 |
with gr.Row(elem_classes="header"):
|
316 |
gr.Markdown("""
|
317 |
-
<h1>🎧
|
318 |
-
<p>Your all-in-one AI solution for crafting engaging audio
|
319 |
""")
|
320 |
|
321 |
gr.Markdown("""
|
322 |
-
Welcome to **
|
323 |
|
324 |
-
- **Script**:
|
325 |
-
- **Voice Synthesis**:
|
326 |
-
- **Music Production**:
|
327 |
-
- **Audio Blending**: Seamlessly blend voice and music with
|
328 |
""")
|
329 |
|
330 |
with gr.Tabs():
|
331 |
-
# Step 1:
|
332 |
with gr.Tab("📝 Script Generation"):
|
333 |
with gr.Row():
|
334 |
user_prompt = gr.Textbox(
|
335 |
label="Promo Idea",
|
336 |
-
placeholder="E.g., A 30-second
|
337 |
lines=2
|
338 |
)
|
339 |
with gr.Row():
|
@@ -343,7 +323,7 @@ with gr.Blocks(css="""
|
|
343 |
placeholder="Enter a valid Hugging Face model ID"
|
344 |
)
|
345 |
duration = gr.Slider(
|
346 |
-
label="Desired
|
347 |
minimum=15,
|
348 |
maximum=60,
|
349 |
step=15,
|
@@ -355,12 +335,12 @@ with gr.Blocks(css="""
|
|
355 |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
356 |
|
357 |
generate_script_button.click(
|
358 |
-
fn=lambda
|
359 |
inputs=[user_prompt, llama_model_id, duration],
|
360 |
outputs=[script_output, sound_design_output, music_suggestion_output],
|
361 |
)
|
362 |
|
363 |
-
# Step 2:
|
364 |
with gr.Tab("🎤 Voice Synthesis"):
|
365 |
gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.")
|
366 |
selected_tts_model = gr.Dropdown(
|
@@ -382,7 +362,7 @@ with gr.Blocks(css="""
|
|
382 |
outputs=voice_audio_output,
|
383 |
)
|
384 |
|
385 |
-
# Step 3:
|
386 |
with gr.Tab("🎶 Music Production"):
|
387 |
gr.Markdown("Generate a custom music track using the **MusicGen Large** model.")
|
388 |
audio_length = gr.Slider(
|
@@ -397,12 +377,12 @@ with gr.Blocks(css="""
|
|
397 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
398 |
|
399 |
generate_music_button.click(
|
400 |
-
fn=lambda
|
401 |
inputs=[music_suggestion_output, audio_length],
|
402 |
outputs=[music_output],
|
403 |
)
|
404 |
|
405 |
-
# Step 4:
|
406 |
with gr.Tab("🎚️ Audio Blending"):
|
407 |
gr.Markdown("Blend your voice-over and music track. Music will be looped/truncated to match the voice duration. Enable ducking to lower the music during voice segments.")
|
408 |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
|
@@ -428,7 +408,7 @@ with gr.Blocks(css="""
|
|
428 |
<hr>
|
429 |
Created with ❤️ by <a href="https://bilsimaging.com" target="_blank" style="color: #88aaff;">bilsimaging.com</a>
|
430 |
<br>
|
431 |
-
<small>
|
432 |
</div>
|
433 |
""")
|
434 |
|
|
|
2 |
import re
|
3 |
import torch
|
4 |
import tempfile
|
5 |
+
import logging
|
6 |
from scipy.io.wavfile import write
|
7 |
from pydub import AudioSegment
|
8 |
from dotenv import load_dotenv
|
|
|
21 |
from TTS.api import TTS
|
22 |
|
23 |
# ---------------------------------------------------------------------
|
24 |
+
# Setup Logging and Environment Variables
|
25 |
# ---------------------------------------------------------------------
|
26 |
+
logging.basicConfig(level=logging.INFO)
|
27 |
load_dotenv()
|
28 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
29 |
|
|
|
41 |
"""
|
42 |
Removes undesired characters (e.g., asterisks) that might not be recognized by the model's vocabulary.
|
43 |
"""
|
|
|
44 |
return re.sub(r'\*', '', text)
|
45 |
|
46 |
# ---------------------------------------------------------------------
|
47 |
+
# Model Helper Functions
|
48 |
# ---------------------------------------------------------------------
|
49 |
def get_llama_pipeline(model_id: str, token: str):
|
50 |
"""
|
51 |
+
Returns a cached LLaMA text-generation pipeline if available; otherwise, loads and caches it.
|
52 |
"""
|
53 |
if model_id in LLAMA_PIPELINES:
|
54 |
return LLAMA_PIPELINES[model_id]
|
|
|
68 |
|
69 |
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
|
70 |
"""
|
71 |
+
Returns a cached MusicGen model and processor if available; otherwise, loads and caches them.
|
72 |
Uses the 'large' variant for higher quality outputs.
|
73 |
"""
|
74 |
if model_key in MUSICGEN_MODELS:
|
|
|
76 |
|
77 |
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
|
78 |
processor = AutoProcessor.from_pretrained(model_key)
|
|
|
79 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
80 |
model.to(device)
|
81 |
MUSICGEN_MODELS[model_key] = (model, processor)
|
|
|
84 |
|
85 |
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
86 |
"""
|
87 |
+
Returns a cached TTS model if available; otherwise, loads and caches it.
|
88 |
"""
|
89 |
if model_name in TTS_MODELS:
|
90 |
return TTS_MODELS[model_name]
|
|
|
100 |
@spaces.GPU(duration=100)
|
101 |
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
|
102 |
"""
|
103 |
+
Generates a voice-over script, sound design suggestions, and music ideas from a user prompt.
|
104 |
+
Returns a tuple: (voice_script, sound_design, music_suggestions).
|
105 |
"""
|
106 |
try:
|
107 |
text_pipeline = get_llama_pipeline(model_id, token)
|
108 |
|
109 |
system_prompt = (
|
110 |
"You are an expert radio imaging producer specializing in sound design and music. "
|
111 |
+
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following:\n"
|
112 |
+
"1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'\n"
|
113 |
+
"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'\n"
|
114 |
+
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'"
|
115 |
)
|
116 |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
|
117 |
|
|
|
127 |
if "Output:" in generated_text:
|
128 |
generated_text = generated_text.split("Output:")[-1].strip()
|
129 |
|
130 |
+
# Try to extract sections using regex; fall back to defaults if not found.
|
131 |
+
pattern = r"Voice-Over Script:\s*(.*?)\s*Sound Design Suggestions:\s*(.*?)\s*Music Suggestions:\s*(.*)"
|
132 |
+
match = re.search(pattern, generated_text, re.DOTALL)
|
133 |
+
if match:
|
134 |
+
voice_script, sound_design, music_suggestions = (grp.strip() for grp in match.groups())
|
135 |
+
else:
|
136 |
+
voice_script = "No voice-over script found."
|
137 |
+
sound_design = "No sound design suggestions found."
|
138 |
+
music_suggestions = "No music suggestions found."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
return voice_script, sound_design, music_suggestions
|
141 |
|
142 |
except Exception as e:
|
143 |
+
logging.exception("Error generating script")
|
144 |
return f"Error generating script: {e}", "", ""
|
145 |
|
146 |
|
|
|
150 |
@spaces.GPU(duration=100)
|
151 |
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
|
152 |
"""
|
153 |
+
Generates a voice-over audio file from the provided script using Coqui TTS.
|
154 |
Returns the file path to the generated .wav file.
|
155 |
"""
|
156 |
try:
|
157 |
if not script.strip():
|
158 |
return "Error: No script provided."
|
159 |
|
|
|
160 |
cleaned_script = clean_text(script)
|
|
|
161 |
tts_model = get_tts_model(tts_model_name)
|
162 |
|
|
|
163 |
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
|
164 |
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
|
165 |
return output_path
|
166 |
|
167 |
except Exception as e:
|
168 |
+
logging.exception("Error generating voice")
|
169 |
return f"Error generating voice: {e}"
|
170 |
|
171 |
|
|
|
175 |
@spaces.GPU(duration=200)
|
176 |
def generate_music(prompt: str, audio_length: int):
|
177 |
"""
|
178 |
+
Generates a music track from the 'facebook/musicgen-large' model based on the prompt.
|
179 |
Returns the file path to the generated .wav file.
|
180 |
"""
|
181 |
try:
|
|
|
184 |
|
185 |
model_key = "facebook/musicgen-large"
|
186 |
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
|
|
|
187 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
188 |
|
189 |
+
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
|
190 |
with torch.inference_mode():
|
191 |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
|
192 |
|
|
|
199 |
return output_path
|
200 |
|
201 |
except Exception as e:
|
202 |
+
logging.exception("Error generating music")
|
203 |
return f"Error generating music: {e}"
|
204 |
|
205 |
|
|
|
210 |
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
|
211 |
"""
|
212 |
Blends two audio files (voice and music).
|
213 |
+
- Loops music if shorter than voice.
|
214 |
+
- Trims music if longer than voice.
|
215 |
+
- Applies ducking to lower music volume during voice segments if enabled.
|
216 |
Returns the file path to the blended .wav file.
|
217 |
"""
|
218 |
try:
|
|
|
223 |
music = AudioSegment.from_wav(music_path)
|
224 |
|
225 |
voice_len = len(voice) # in milliseconds
|
|
|
226 |
|
227 |
+
# Loop music if it's shorter than voice
|
228 |
+
if len(music) < voice_len:
|
229 |
looped_music = AudioSegment.empty()
|
230 |
while len(looped_music) < voice_len:
|
231 |
looped_music += music
|
232 |
music = looped_music
|
233 |
|
234 |
+
# Trim music to match voice duration
|
235 |
+
music = music[:voice_len]
|
|
|
236 |
|
237 |
if ducking:
|
238 |
ducked_music = music - duck_level
|
|
|
245 |
return output_path
|
246 |
|
247 |
except Exception as e:
|
248 |
+
logging.exception("Error blending audio")
|
249 |
return f"Error blending audio: {e}"
|
250 |
|
251 |
|
252 |
# ---------------------------------------------------------------------
|
253 |
+
# Gradio Interface with Enhanced UI for Ai Ads Promo
|
254 |
# ---------------------------------------------------------------------
|
255 |
with gr.Blocks(css="""
|
256 |
/* Global Styles */
|
|
|
294 |
# Custom Header
|
295 |
with gr.Row(elem_classes="header"):
|
296 |
gr.Markdown("""
|
297 |
+
<h1>🎧 Ai Ads Promo</h1>
|
298 |
+
<p>Your all-in-one AI solution for crafting engaging audio ads.</p>
|
299 |
""")
|
300 |
|
301 |
gr.Markdown("""
|
302 |
+
Welcome to **Ai Ads Promo**! This platform leverages state-of-the-art AI models to help you generate:
|
303 |
|
304 |
+
- **Script**: Create a compelling voice-over script using LLaMA.
|
305 |
+
- **Voice Synthesis**: Produce natural-sounding voice-overs with Coqui TTS.
|
306 |
+
- **Music Production**: Generate custom music tracks with MusicGen.
|
307 |
+
- **Audio Blending**: Seamlessly blend voice and music with optional ducking.
|
308 |
""")
|
309 |
|
310 |
with gr.Tabs():
|
311 |
+
# Step 1: Script Generation
|
312 |
with gr.Tab("📝 Script Generation"):
|
313 |
with gr.Row():
|
314 |
user_prompt = gr.Textbox(
|
315 |
label="Promo Idea",
|
316 |
+
placeholder="E.g., A 30-second ad for a morning show...",
|
317 |
lines=2
|
318 |
)
|
319 |
with gr.Row():
|
|
|
323 |
placeholder="Enter a valid Hugging Face model ID"
|
324 |
)
|
325 |
duration = gr.Slider(
|
326 |
+
label="Desired Ad Duration (seconds)",
|
327 |
minimum=15,
|
328 |
maximum=60,
|
329 |
step=15,
|
|
|
335 |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
|
336 |
|
337 |
generate_script_button.click(
|
338 |
+
fn=lambda prompt, model_id, dur: generate_script(prompt, model_id, HF_TOKEN, dur),
|
339 |
inputs=[user_prompt, llama_model_id, duration],
|
340 |
outputs=[script_output, sound_design_output, music_suggestion_output],
|
341 |
)
|
342 |
|
343 |
+
# Step 2: Voice Synthesis
|
344 |
with gr.Tab("🎤 Voice Synthesis"):
|
345 |
gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.")
|
346 |
selected_tts_model = gr.Dropdown(
|
|
|
362 |
outputs=voice_audio_output,
|
363 |
)
|
364 |
|
365 |
+
# Step 3: Music Production
|
366 |
with gr.Tab("🎶 Music Production"):
|
367 |
gr.Markdown("Generate a custom music track using the **MusicGen Large** model.")
|
368 |
audio_length = gr.Slider(
|
|
|
377 |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
|
378 |
|
379 |
generate_music_button.click(
|
380 |
+
fn=lambda music_prompt, length: generate_music(music_prompt, length),
|
381 |
inputs=[music_suggestion_output, audio_length],
|
382 |
outputs=[music_output],
|
383 |
)
|
384 |
|
385 |
+
# Step 4: Audio Blending
|
386 |
with gr.Tab("🎚️ Audio Blending"):
|
387 |
gr.Markdown("Blend your voice-over and music track. Music will be looped/truncated to match the voice duration. Enable ducking to lower the music during voice segments.")
|
388 |
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
|
|
|
408 |
<hr>
|
409 |
Created with ❤️ by <a href="https://bilsimaging.com" target="_blank" style="color: #88aaff;">bilsimaging.com</a>
|
410 |
<br>
|
411 |
+
<small>Ai Ads Promo © 2025</small>
|
412 |
</div>
|
413 |
""")
|
414 |
|