Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import os | |
import torch | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
pipeline, | |
AutoProcessor, | |
MusicgenForConditionalGeneration, | |
) | |
from scipy.io.wavfile import write | |
from pydub import AudioSegment | |
from dotenv import load_dotenv | |
import tempfile | |
import spaces | |
from TTS.api import TTS | |
# ------------------------------- | |
# Configuration | |
# ------------------------------- | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
MODEL_CONFIG = { | |
"llama_models": { | |
"Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct", | |
"Mistral-7B": "mistralai/Mistral-7B-Instruct-v0.2", | |
}, | |
"tts_models": { | |
"Standard English": "tts_models/en/ljspeech/tacotron2-DDC", | |
"High Quality": "tts_models/en/ljspeech/vits", | |
} | |
} | |
# ------------------------------- | |
# Model Manager | |
# ------------------------------- | |
class ModelManager: | |
def __init__(self): | |
self.llama_pipelines = {} | |
self.musicgen_models = {} | |
self.tts_models = {} | |
def get_llama_pipeline(self, model_id, token): | |
if model_id not in self.llama_pipelines: | |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
use_auth_token=token, | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
self.llama_pipelines[model_id] = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer | |
) | |
return self.llama_pipelines[model_id] | |
def get_musicgen_model(self, model_key="facebook/musicgen-large"): | |
if model_key not in self.musicgen_models: | |
model = MusicgenForConditionalGeneration.from_pretrained(model_key) | |
processor = AutoProcessor.from_pretrained(model_key) | |
self.musicgen_models[model_key] = (model, processor) | |
return self.musicgen_models[model_key] | |
def get_tts_model(self, model_name): | |
if model_name not in self.tts_models: | |
self.tts_models[model_name] = TTS(model_name) | |
return self.tts_models[model_name] | |
model_manager = ModelManager() | |
# ------------------------------- | |
# Core Functions | |
# ------------------------------- | |
def generate_script(user_prompt, model_id, duration): | |
try: | |
text_pipeline = model_manager.get_llama_pipeline(model_id, HF_TOKEN) | |
system_prompt = f"""Create a {duration}-second audio promo with these elements: | |
1. Voice Script: [Clear narration] | |
2. Sound Design: [3-5 effects] | |
3. Music: [Genre/tempo] | |
Concept: {user_prompt}""" | |
result = text_pipeline( | |
system_prompt, | |
max_new_tokens=300, | |
temperature=0.7, | |
do_sample=True | |
) | |
generated_text = result[0]["generated_text"] | |
return parse_generated_content(generated_text) | |
except Exception as e: | |
return f"Error: {str(e)}", "", "" | |
def parse_generated_content(text): | |
sections = { | |
"Voice Script": "", | |
"Sound Design": "", | |
"Music": "" | |
} | |
current_section = None | |
for line in text.split('\n'): | |
line = line.strip() | |
if "Voice Script:" in line: | |
current_section = "Voice Script" | |
line = line.replace("Voice Script:", "").strip() | |
elif "Sound Design:" in line: | |
current_section = "Sound Design" | |
line = line.replace("Sound Design:", "").strip() | |
elif "Music:" in line: | |
current_section = "Music" | |
line = line.replace("Music:", "").strip() | |
if current_section and line: | |
sections[current_section] += line + "\n" | |
return sections["Voice Script"].strip(), sections["Sound Design"].strip(), sections["Music"].strip() | |
def generate_voice(script, tts_model): | |
try: | |
if not script.strip(): | |
return "Error: No script provided" | |
tts = model_manager.get_tts_model(tts_model) | |
output_path = os.path.join(tempfile.gettempdir(), "voice.wav") | |
tts.tts_to_file(text=script, file_path=output_path) | |
return output_path | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def generate_music(prompt, duration_sec=30): | |
try: | |
model, processor = model_manager.get_musicgen_model() | |
inputs = processor(text=[prompt], padding=True, return_tensors="pt") | |
audio_values = model.generate(**inputs, max_new_tokens=int(duration_sec * 50)) | |
output_path = os.path.join(tempfile.gettempdir(), "music.wav") | |
write(output_path, 44100, audio_values[0, 0].cpu().numpy()) | |
return output_path | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def blend_audio(voice_path, music_path, ducking=True, duck_level=10): | |
try: | |
voice = AudioSegment.from_wav(voice_path) | |
music = AudioSegment.from_wav(music_path) | |
# Align durations | |
if len(music) < len(voice): | |
music = music * (len(voice) // len(music) + 1) | |
music = music[:len(voice)] | |
# Apply ducking | |
if ducking: | |
music = music - duck_level | |
mixed = music.overlay(voice) | |
output_path = os.path.join(tempfile.gettempdir(), "final_mix.wav") | |
mixed.export(output_path, format="wav") | |
return output_path | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# ------------------------------- | |
# Gradio Interface (Second UI Version) | |
# ------------------------------- | |
with gr.Blocks(title="AI Radio Studio", css=""" | |
.gradio-container {max-width: 800px; margin: auto;} | |
.tab-item {padding: 20px; border-radius: 10px;} | |
""") as demo: | |
gr.Markdown(""" | |
# ποΈ AI Radio Studio | |
*Professional Audio Production Made Simple* | |
""") | |
with gr.Tabs(): | |
# Concept Tab | |
with gr.Tab("π― Concept"): | |
with gr.Row(): | |
with gr.Column(): | |
concept_input = gr.Textbox( | |
label="Your Idea", | |
placeholder="Describe your audio project...", | |
lines=3 | |
) | |
model_select = gr.Dropdown( | |
choices=list(MODEL_CONFIG["llama_models"].values()), | |
label="AI Model", | |
value="meta-llama/Meta-Llama-3-8B-Instruct" | |
) | |
duration_select = gr.Slider(15, 60, 30, step=15, label="Duration (seconds)") | |
generate_btn = gr.Button("Generate Script", variant="primary") | |
with gr.Column(): | |
script_output = gr.Textbox(label="Voice Script", interactive=True) | |
sound_output = gr.Textbox(label="Sound Design", interactive=True) | |
music_output = gr.Textbox(label="Music Suggestions", interactive=True) | |
# Voice Tab | |
with gr.Tab("π£οΈ Voice"): | |
with gr.Row(): | |
with gr.Column(): | |
tts_select = gr.Dropdown( | |
choices=list(MODEL_CONFIG["tts_models"].values()), | |
label="Voice Model", | |
value="tts_models/en/ljspeech/tacotron2-DDC" | |
) | |
voice_btn = gr.Button("Generate Voiceover", variant="primary") | |
with gr.Column(): | |
voice_preview = gr.Audio(label="Preview", type="filepath") | |
# Music Tab | |
with gr.Tab("π΅ Music"): | |
music_btn = gr.Button("Generate Music Track", variant="primary") | |
music_preview = gr.Audio(label="Preview", type="filepath") | |
# Mix Tab | |
with gr.Tab("π Mix"): | |
with gr.Row(): | |
with gr.Column(): | |
ducking_toggle = gr.Checkbox(True, label="Enable Voice Ducking") | |
duck_level = gr.Slider(0, 20, 10, label="Ducking Level (dB)") | |
mix_btn = gr.Button("Create Final Mix", variant="primary") | |
with gr.Column(): | |
final_mix = gr.Audio(label="Final Output", type="filepath") | |
# Footer Section | |
gr.Markdown(""" | |
<div style="text-align: center; margin-top: 30px; padding: 15px; border-top: 1px solid #e0e0e0;"> | |
<p style="font-size: 0.9em; color: #666;"> | |
Created with β€οΈ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a> | |
</p> | |
<a href="https://visitorbadge.io/status?path=https://huggingface.co/spaces/Bils/radiogold"> | |
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759"/> | |
</a> | |
</div> | |
""") | |
# Event Handlers | |
generate_btn.click( | |
generate_script, | |
inputs=[concept_input, model_select, duration_select], | |
outputs=[script_output, sound_output, music_output] | |
) | |
voice_btn.click( | |
generate_voice, | |
inputs=[script_output, tts_select], | |
outputs=voice_preview | |
) | |
music_btn.click( | |
generate_music, | |
inputs=[music_output], | |
outputs=music_preview | |
) | |
mix_btn.click( | |
blend_audio, | |
inputs=[voice_preview, music_preview, ducking_toggle, duck_level], | |
outputs=final_mix | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |