Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import os | |
import torch | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
pipeline, | |
AutoProcessor, | |
MusicgenForConditionalGeneration, | |
) | |
from scipy.io.wavfile import write | |
from pydub import AudioSegment | |
from dotenv import load_dotenv | |
import tempfile | |
import spaces | |
from TTS.api import TTS | |
from TTS.utils.synthesizer import Synthesizer | |
# --------------------------------------------------------------------- | |
# Load Environment Variables | |
# --------------------------------------------------------------------- | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# --------------------------------------------------------------------- | |
# Global Model Caches | |
# --------------------------------------------------------------------- | |
# We store models/pipelines in global variables for reuse, | |
# so they are only loaded once. | |
LLAMA_PIPELINES = {} | |
MUSICGEN_MODELS = {} | |
# --------------------------------------------------------------------- | |
# Helper Functions | |
# --------------------------------------------------------------------- | |
def get_llama_pipeline(model_id: str, token: str): | |
""" | |
Returns a cached LLaMA pipeline if available; otherwise, loads it. | |
This significantly reduces loading time for repeated calls. | |
""" | |
if model_id in LLAMA_PIPELINES: | |
return LLAMA_PIPELINES[model_id] | |
# Load new pipeline and store in cache | |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
use_auth_token=token, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
trust_remote_code=True, | |
) | |
text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
LLAMA_PIPELINES[model_id] = text_pipeline | |
return text_pipeline | |
def get_musicgen_model(model_key: str = "facebook/musicgen-medium"): | |
""" | |
Returns a cached MusicGen model if available; otherwise, loads it. | |
""" | |
if model_key in MUSICGEN_MODELS: | |
return MUSICGEN_MODELS[model_key] | |
# Load new MusicGen model and store in cache | |
model = MusicgenForConditionalGeneration.from_pretrained(model_key) | |
processor = AutoProcessor.from_pretrained(model_key) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
MUSICGEN_MODELS[model_key] = (model, processor) | |
return model, processor | |
# --------------------------------------------------------------------- | |
# Script Generation Function | |
# --------------------------------------------------------------------- | |
def generate_script(user_prompt: str, model_id: str, token: str, duration: int): | |
""" | |
Generates a script, sound design suggestions, and music ideas from a user prompt. | |
Returns a tuple of strings: (voice_script, sound_design, music_suggestions). | |
""" | |
try: | |
text_pipeline = get_llama_pipeline(model_id, token) | |
# System prompt with clear structure instructions | |
system_prompt = ( | |
"You are an expert radio imaging producer specializing in sound design and music. " | |
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: " | |
"1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'.\n" | |
"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n" | |
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'." | |
) | |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:" | |
# Use inference mode for efficient forward passes | |
with torch.inference_mode(): | |
result = text_pipeline( | |
combined_prompt, | |
max_new_tokens=300, | |
do_sample=True, | |
temperature=0.8 | |
) | |
# LLaMA pipeline returns a list of dicts with "generated_text" | |
generated_text = result[0]["generated_text"] | |
# Basic parsing to isolate everything after "Output:" | |
# (in case the model repeated your system prompt). | |
if "Output:" in generated_text: | |
generated_text = generated_text.split("Output:")[-1].strip() | |
# Extract sections based on known prefixes | |
voice_script = "No voice-over script found." | |
sound_design = "No sound design suggestions found." | |
music_suggestions = "No music suggestions found." | |
if "Voice-Over Script:" in generated_text: | |
parts = generated_text.split("Voice-Over Script:") | |
if len(parts) > 1: | |
# Everything after "Voice-Over Script:" up until next prefix | |
voice_script_part = parts[1] | |
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip() \ | |
if "Sound Design Suggestions:" in voice_script_part else voice_script_part.strip() | |
if "Sound Design Suggestions:" in generated_text: | |
parts = generated_text.split("Sound Design Suggestions:") | |
if len(parts) > 1: | |
sound_design_part = parts[1] | |
sound_design = sound_design_part.split("Music Suggestions:")[0].strip() \ | |
if "Music Suggestions:" in sound_design_part else sound_design_part.strip() | |
if "Music Suggestions:" in generated_text: | |
parts = generated_text.split("Music Suggestions:") | |
if len(parts) > 1: | |
music_suggestions = parts[1].strip() | |
return voice_script, sound_design, music_suggestions | |
except Exception as e: | |
return f"Error generating script: {e}", "", "" | |
# --------------------------------------------------------------------- | |
# Voice-Over Generation Function (Inactive) | |
# --------------------------------------------------------------------- | |
def generate_voice(script: str, speaker: str = "default"): | |
""" | |
Placeholder for future voice-over generation functionality. | |
""" | |
try: | |
return "Voice-over generation is currently inactive." | |
except Exception as e: | |
return f"Error: {e}" | |
# --------------------------------------------------------------------- | |
# Music Generation Function | |
# --------------------------------------------------------------------- | |
def generate_music(prompt: str, audio_length: int): | |
""" | |
Generates music from the 'facebook/musicgen-medium' model based on the prompt. | |
Returns the file path to the generated .wav file. | |
""" | |
try: | |
model_key = "facebook/musicgen-medium" | |
musicgen_model, musicgen_processor = get_musicgen_model(model_key) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Prepare input | |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device) | |
# Generate music within inference mode | |
with torch.inference_mode(): | |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length) | |
audio_data = outputs[0, 0].cpu().numpy() | |
# Normalize audio to int16 format | |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16") | |
# Save generated music to a temp file | |
output_path = f"{tempfile.gettempdir()}/musicgen_medium_generated_music.wav" | |
write(output_path, 44100, normalized_audio) | |
return output_path | |
except Exception as e: | |
return f"Error generating music: {e}" | |
# --------------------------------------------------------------------- | |
# Audio Blending Function (Inactive) | |
# --------------------------------------------------------------------- | |
def blend_audio(voice_path: str, music_path: str, ducking: bool): | |
""" | |
Placeholder for future audio blending functionality with optional ducking. | |
""" | |
try: | |
return "Audio blending functionality is currently inactive." | |
except Exception as e: | |
return f"Error: {e}" | |
# --------------------------------------------------------------------- | |
# Gradio Interface | |
# --------------------------------------------------------------------- | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# 🎧 AI Promo Studio 🚀 | |
Welcome to **AI Promo Studio**, your one-stop solution for creating stunning and professional radio promos with ease! | |
Whether you're a sound designer, radio producer, or content creator, our AI-driven tools, powered by advanced LLM Llama models, empower you to bring your vision to life in just a few steps. | |
""") | |
with gr.Tabs(): | |
# Step 1: Generate Script | |
with gr.Tab("Step 1: Generate Script"): | |
with gr.Row(): | |
user_prompt = gr.Textbox( | |
label="Promo Idea", | |
placeholder="E.g., A 30-second promo for a morning show...", | |
lines=2 | |
) | |
llama_model_id = gr.Textbox( | |
label="LLaMA Model ID", | |
value="meta-llama/Meta-Llama-3-8B-Instruct", | |
placeholder="Enter a valid Hugging Face model ID" | |
) | |
duration = gr.Slider( | |
label="Desired Promo Duration (seconds)", | |
minimum=15, | |
maximum=60, | |
step=15, | |
value=30 | |
) | |
generate_script_button = gr.Button("Generate Script") | |
script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False) | |
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False) | |
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False) | |
generate_script_button.click( | |
fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur), | |
inputs=[user_prompt, llama_model_id, duration], | |
outputs=[script_output, sound_design_output, music_suggestion_output], | |
) | |
# Step 2: Generate Voice (Inactive) | |
with gr.Tab("Step 2: Generate Voice"): | |
gr.Markdown(""" | |
**Note:** Voice-over generation is currently inactive. | |
This feature will be available in future updates! | |
""") | |
# Step 3: Generate Music | |
with gr.Tab("Step 3: Generate Music"): | |
with gr.Row(): | |
audio_length = gr.Slider( | |
label="Music Length (tokens)", | |
minimum=128, | |
maximum=1024, | |
step=64, | |
value=512, | |
info="Increase tokens for longer audio, but be mindful of inference time." | |
) | |
generate_music_button = gr.Button("Generate Music") | |
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath") | |
generate_music_button.click( | |
fn=lambda music_suggestion, length: generate_music(music_suggestion, length), | |
inputs=[music_suggestion_output, audio_length], | |
outputs=[music_output], | |
) | |
# Step 4: Blend Audio (Inactive) | |
with gr.Tab("Step 4: Blend Audio"): | |
gr.Markdown(""" | |
**Note:** Audio blending functionality is currently inactive. | |
This feature will be available in future updates! | |
""") | |
# Footer / Credits | |
gr.Markdown(""" | |
<hr> | |
<p style="text-align: center; font-size: 0.9em;"> | |
Created with ❤️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a> | |
</p> | |
""") | |
# Visitor Badge | |
gr.HTML(""" | |
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold"> | |
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" /> | |
</a> | |
""") | |
# Launch the Gradio app | |
demo.launch(debug=True) | |