AIPromoStudio / app.py
Bils's picture
Update app.py
2de59b3 verified
raw
history blame
12.1 kB
import gradio as gr
import os
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import tempfile
import spaces
from TTS.api import TTS
from TTS.utils.synthesizer import Synthesizer
# ---------------------------------------------------------------------
# Load Environment Variables
# ---------------------------------------------------------------------
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
# ---------------------------------------------------------------------
# Global Model Caches
# ---------------------------------------------------------------------
# We store models/pipelines in global variables for reuse,
# so they are only loaded once.
LLAMA_PIPELINES = {}
MUSICGEN_MODELS = {}
# ---------------------------------------------------------------------
# Helper Functions
# ---------------------------------------------------------------------
def get_llama_pipeline(model_id: str, token: str):
"""
Returns a cached LLaMA pipeline if available; otherwise, loads it.
This significantly reduces loading time for repeated calls.
"""
if model_id in LLAMA_PIPELINES:
return LLAMA_PIPELINES[model_id]
# Load new pipeline and store in cache
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
use_auth_token=token,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
LLAMA_PIPELINES[model_id] = text_pipeline
return text_pipeline
def get_musicgen_model(model_key: str = "facebook/musicgen-medium"):
"""
Returns a cached MusicGen model if available; otherwise, loads it.
"""
if model_key in MUSICGEN_MODELS:
return MUSICGEN_MODELS[model_key]
# Load new MusicGen model and store in cache
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
processor = AutoProcessor.from_pretrained(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
MUSICGEN_MODELS[model_key] = (model, processor)
return model, processor
# ---------------------------------------------------------------------
# Script Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
"""
Generates a script, sound design suggestions, and music ideas from a user prompt.
Returns a tuple of strings: (voice_script, sound_design, music_suggestions).
"""
try:
text_pipeline = get_llama_pipeline(model_id, token)
# System prompt with clear structure instructions
system_prompt = (
"You are an expert radio imaging producer specializing in sound design and music. "
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
"1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'.\n"
"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n"
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
)
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
# Use inference mode for efficient forward passes
with torch.inference_mode():
result = text_pipeline(
combined_prompt,
max_new_tokens=300,
do_sample=True,
temperature=0.8
)
# LLaMA pipeline returns a list of dicts with "generated_text"
generated_text = result[0]["generated_text"]
# Basic parsing to isolate everything after "Output:"
# (in case the model repeated your system prompt).
if "Output:" in generated_text:
generated_text = generated_text.split("Output:")[-1].strip()
# Extract sections based on known prefixes
voice_script = "No voice-over script found."
sound_design = "No sound design suggestions found."
music_suggestions = "No music suggestions found."
if "Voice-Over Script:" in generated_text:
parts = generated_text.split("Voice-Over Script:")
if len(parts) > 1:
# Everything after "Voice-Over Script:" up until next prefix
voice_script_part = parts[1]
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip() \
if "Sound Design Suggestions:" in voice_script_part else voice_script_part.strip()
if "Sound Design Suggestions:" in generated_text:
parts = generated_text.split("Sound Design Suggestions:")
if len(parts) > 1:
sound_design_part = parts[1]
sound_design = sound_design_part.split("Music Suggestions:")[0].strip() \
if "Music Suggestions:" in sound_design_part else sound_design_part.strip()
if "Music Suggestions:" in generated_text:
parts = generated_text.split("Music Suggestions:")
if len(parts) > 1:
music_suggestions = parts[1].strip()
return voice_script, sound_design, music_suggestions
except Exception as e:
return f"Error generating script: {e}", "", ""
# ---------------------------------------------------------------------
# Voice-Over Generation Function (Inactive)
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_voice(script: str, speaker: str = "default"):
"""
Placeholder for future voice-over generation functionality.
"""
try:
return "Voice-over generation is currently inactive."
except Exception as e:
return f"Error: {e}"
# ---------------------------------------------------------------------
# Music Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_music(prompt: str, audio_length: int):
"""
Generates music from the 'facebook/musicgen-medium' model based on the prompt.
Returns the file path to the generated .wav file.
"""
try:
model_key = "facebook/musicgen-medium"
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
# Prepare input
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
# Generate music within inference mode
with torch.inference_mode():
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
audio_data = outputs[0, 0].cpu().numpy()
# Normalize audio to int16 format
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
# Save generated music to a temp file
output_path = f"{tempfile.gettempdir()}/musicgen_medium_generated_music.wav"
write(output_path, 44100, normalized_audio)
return output_path
except Exception as e:
return f"Error generating music: {e}"
# ---------------------------------------------------------------------
# Audio Blending Function (Inactive)
# ---------------------------------------------------------------------
def blend_audio(voice_path: str, music_path: str, ducking: bool):
"""
Placeholder for future audio blending functionality with optional ducking.
"""
try:
return "Audio blending functionality is currently inactive."
except Exception as e:
return f"Error: {e}"
# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("""
# 🎧 AI Promo Studio 🚀
Welcome to **AI Promo Studio**, your one-stop solution for creating stunning and professional radio promos with ease!
Whether you're a sound designer, radio producer, or content creator, our AI-driven tools, powered by advanced LLM Llama models, empower you to bring your vision to life in just a few steps.
""")
with gr.Tabs():
# Step 1: Generate Script
with gr.Tab("Step 1: Generate Script"):
with gr.Row():
user_prompt = gr.Textbox(
label="Promo Idea",
placeholder="E.g., A 30-second promo for a morning show...",
lines=2
)
llama_model_id = gr.Textbox(
label="LLaMA Model ID",
value="meta-llama/Meta-Llama-3-8B-Instruct",
placeholder="Enter a valid Hugging Face model ID"
)
duration = gr.Slider(
label="Desired Promo Duration (seconds)",
minimum=15,
maximum=60,
step=15,
value=30
)
generate_script_button = gr.Button("Generate Script")
script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False)
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
generate_script_button.click(
fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur),
inputs=[user_prompt, llama_model_id, duration],
outputs=[script_output, sound_design_output, music_suggestion_output],
)
# Step 2: Generate Voice (Inactive)
with gr.Tab("Step 2: Generate Voice"):
gr.Markdown("""
**Note:** Voice-over generation is currently inactive.
This feature will be available in future updates!
""")
# Step 3: Generate Music
with gr.Tab("Step 3: Generate Music"):
with gr.Row():
audio_length = gr.Slider(
label="Music Length (tokens)",
minimum=128,
maximum=1024,
step=64,
value=512,
info="Increase tokens for longer audio, but be mindful of inference time."
)
generate_music_button = gr.Button("Generate Music")
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
generate_music_button.click(
fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
inputs=[music_suggestion_output, audio_length],
outputs=[music_output],
)
# Step 4: Blend Audio (Inactive)
with gr.Tab("Step 4: Blend Audio"):
gr.Markdown("""
**Note:** Audio blending functionality is currently inactive.
This feature will be available in future updates!
""")
# Footer / Credits
gr.Markdown("""
<hr>
<p style="text-align: center; font-size: 0.9em;">
Created with ❤️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
</p>
""")
# Visitor Badge
gr.HTML("""
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" />
</a>
""")
# Launch the Gradio app
demo.launch(debug=True)