AIPromoStudio / app.py
Bils's picture
Update app.py
1c1b50f verified
raw
history blame
7.39 kB
import gradio as gr
import os
import torch
import time
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
import tempfile
from dotenv import load_dotenv
import spaces # Hugging Face Spaces library for ZeroGPU support
# Load environment variables (e.g., Hugging Face token)
load_dotenv()
hf_token = os.getenv("HF_TOKEN")
# Globals for lazy loading
llama_pipeline = None
musicgen_model = None
musicgen_processor = None
# ---------------------------------------------------------------------
# Helper: Safe Model Loader with Retry Logic
# ---------------------------------------------------------------------
def safe_load_model(model_id, token, retries=3, delay=5):
for attempt in range(retries):
try:
model = AutoModelForCausalLM.from_pretrained(
model_id,
use_auth_token=token,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
offload_folder="/tmp", # Stream shards
cache_dir="/tmp" # Cache directory for shard downloads
)
return model
except Exception as e:
print(f"Attempt {attempt + 1} failed: {e}")
time.sleep(delay)
raise RuntimeError(f"Failed to load model {model_id} after {retries} attempts")
# ---------------------------------------------------------------------
# Load Llama 3 Model with Zero GPU (Lazy Loading)
# ---------------------------------------------------------------------
@spaces.GPU(duration=600) # Increased duration to handle large models
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
global llama_pipeline
if llama_pipeline is None:
try:
print("Starting model loading...")
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
print("Tokenizer loaded.")
model = safe_load_model(model_id, token)
print("Model loaded. Initializing pipeline...")
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
print("Pipeline initialized successfully.")
except Exception as e:
print(f"Error loading Llama pipeline: {e}")
return str(e)
return llama_pipeline
# ---------------------------------------------------------------------
# Generate Radio Script
# ---------------------------------------------------------------------
def generate_script(user_input: str, pipeline_llama):
try:
system_prompt = (
"You are a top-tier radio imaging producer using Llama 3. "
"Take the user's concept and craft a short, creative promo script."
)
combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
result = pipeline_llama(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
return result[0]['generated_text'].split("Refined script:")[-1].strip()
except Exception as e:
return f"Error generating script: {e}"
# ---------------------------------------------------------------------
# Load MusicGen Model (Lazy Loading)
# ---------------------------------------------------------------------
@spaces.GPU(duration=600)
def load_musicgen_model():
global musicgen_model, musicgen_processor
if musicgen_model is None or musicgen_processor is None:
try:
print("Loading MusicGen model...")
musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
print("MusicGen model loaded successfully.")
except Exception as e:
print(f"Error loading MusicGen model: {e}")
return None, str(e)
return musicgen_model, musicgen_processor
# ---------------------------------------------------------------------
# Generate Audio
# ---------------------------------------------------------------------
@spaces.GPU(duration=600)
def generate_audio(prompt: str, audio_length: int):
global musicgen_model, musicgen_processor
if musicgen_model is None or musicgen_processor is None:
musicgen_model, musicgen_processor = load_musicgen_model()
if isinstance(musicgen_model, str):
return musicgen_model
try:
musicgen_model.to("cuda") # Move the model to GPU
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
musicgen_model.to("cpu") # Return the model to CPU
sr = musicgen_model.config.audio_encoder.sampling_rate
audio_data = outputs[0, 0].cpu().numpy()
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
write(temp_wav.name, sr, normalized_audio)
return temp_wav.name
except Exception as e:
return f"Error generating audio: {e}"
# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
def generate_script_interface(user_prompt, llama_model_id):
# Load Llama 3 Pipeline with Zero GPU
pipeline_llama = load_llama_pipeline_zero_gpu(llama_model_id, hf_token)
if isinstance(pipeline_llama, str):
return pipeline_llama
# Generate Script
script = generate_script(user_prompt, pipeline_llama)
return script
def generate_audio_interface(script, audio_length):
# Generate Audio
audio_data = generate_audio(script, audio_length)
return audio_data
# ---------------------------------------------------------------------
# Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)")
with gr.Row():
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.")
llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-8B") # Using a smaller model for better compatibility
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
with gr.Row():
generate_script_button = gr.Button("Generate Promo Script")
script_output = gr.Textbox(label="Generated Script", interactive=False)
with gr.Row():
generate_audio_button = gr.Button("Generate Audio")
audio_output = gr.Audio(label="Generated Audio", type="filepath")
generate_script_button.click(
generate_script_interface,
inputs=[user_prompt, llama_model_id],
outputs=script_output
)
generate_audio_button.click(
generate_audio_interface,
inputs=[script_output, audio_length],
outputs=audio_output
)
# ---------------------------------------------------------------------
# Launch App
# ---------------------------------------------------------------------
demo.launch(debug=True)