import gradio as gr from PIL import Image import os from IndicPhotoOCR.ocr import OCR # Ensure OCR class is saved in a file named ocr.py from IndicPhotoOCR.theme import Seafoam from IndicPhotoOCR.utils.helper import detect_para # Possible values for identifier_lang VALID_IDENTIFIER_LANGS = ["hindi", "assamese", "bengali", "gujarati", "kannada", "malayalam","odia", "punjabi", "tamil", "telugu", "auto"] # Add more as needed def process_image(image, identifier_lang): """ Processes the uploaded image for text detection and recognition. - Detects bounding boxes in the image - Draws bounding boxes on the image and identifies script in each detected area - Recognizes text in each cropped region and returns the annotated image and recognized text Parameters: image (PIL.Image): The input image to be processed. identifier_lang (str): The script identifier model to use. Returns: tuple: A PIL.Image with bounding boxes and a string of recognized text. """ # Save the input image temporarily image_path = "input_image.jpg" image.save(image_path) # Initialize OCR with the selected identifier language ocr = OCR(device="cpu", identifier_lang=identifier_lang, verbose=False) # Detect bounding boxes on the image using OCR detections = ocr.detect(image_path) # Draw bounding boxes on the image and save it as output ocr.visualize_detection(image_path, detections, save_path="output_image.png") # Load the annotated image with bounding boxes drawn output_image = Image.open("output_image.png") # Recognize text from the detected areas recognized_text = ocr.ocr(image_path) recognized_text = '\n'.join([' '.join(line) for line in recognized_text]) return output_image, recognized_text # Custom HTML for interface header with logos and alignment interface_html = """
IITJ Logo
Bhashini Logo
""" # Links to GitHub and Dataset repositories with GitHub icon links_html = """
GitHub Repository Dataset Repository
""" # Custom CSS to style the text box font size custom_css = """ .custom-textbox textarea { font-size: 20px !important; } """ # Create an instance of the Seafoam theme for a consistent visual style seafoam = Seafoam() # Define examples for users to try out examples = [ ["test_images/image_141.jpg", "hindi"], ["test_images/image_1164.jpg", "auto"] ] title = "

Developed by IITJ

" # Define the Gradio interface iface = gr.Interface( fn=process_image, inputs=[ gr.Image(type="pil", image_mode="RGB"), gr.Dropdown(VALID_IDENTIFIER_LANGS, label="Identifier Language", value="hindi") ], outputs=[ gr.Image(type="pil", label="Processed Image"), gr.Textbox(label="Recognized Text") ], title="IndicPhotoOCR - Indic Scene Text Recogniser Toolkit", description=title+interface_html+links_html, theme=seafoam, css=custom_css, examples=examples ) # Server setup and launch configuration # if __name__ == "__main__": # server = "0.0.0.0" # IP address for server # port = 7866 # Port to run the server on # iface.launch(server_name=server, server_port=port, share=False) iface.launch()