File size: 4,108 Bytes
e2f99d5
 
 
 
 
75b1563
e2f99d5
83c2afb
 
e2f99d5
83c2afb
e2f99d5
 
 
 
 
 
 
 
83c2afb
e2f99d5
 
 
 
 
 
 
 
83c2afb
 
916bd05
e2f99d5
 
 
 
 
 
 
 
 
 
83c2afb
 
 
e2f99d5
83c2afb
e2f99d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f0ffb
e2f99d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a53b684
 
e2f99d5
 
 
 
83c2afb
 
 
e2f99d5
83c2afb
 
 
 
e2f99d5
83c2afb
 
e2f99d5
 
 
 
 
 
 
476f8b5
 
da8e486
 
4aa9ef2
83c2afb
e2f99d5
83c2afb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
from PIL import Image
import os
from IndicPhotoOCR.ocr import OCR  # Ensure OCR class is saved in a file named ocr.py
from IndicPhotoOCR.theme import Seafoam
from IndicPhotoOCR.utils.helper import detect_para

# Possible values for identifier_lang
VALID_IDENTIFIER_LANGS = ["hindi", "assamese", "bengali", "gujarati", "kannada", "malayalam","odia", "punjabi", "tamil", "telugu", "auto"]  # Add more as needed

def process_image(image, identifier_lang):
    """
    Processes the uploaded image for text detection and recognition. 
    - Detects bounding boxes in the image
    - Draws bounding boxes on the image and identifies script in each detected area
    - Recognizes text in each cropped region and returns the annotated image and recognized text

    Parameters:
    image (PIL.Image): The input image to be processed.
    identifier_lang (str): The script identifier model to use.

    Returns:
    tuple: A PIL.Image with bounding boxes and a string of recognized text.
    """
    
    # Save the input image temporarily
    image_path = "input_image.jpg"
    image.save(image_path)

    # Initialize OCR with the selected identifier language
    ocr = OCR(device="cpu", identifier_lang=identifier_lang, verbose=False)
    
    # Detect bounding boxes on the image using OCR
    detections = ocr.detect(image_path)
    
    # Draw bounding boxes on the image and save it as output
    ocr.visualize_detection(image_path, detections, save_path="output_image.png")
    
    # Load the annotated image with bounding boxes drawn
    output_image = Image.open("output_image.png")
    
    # Recognize text from the detected areas
    recognized_text = ocr.ocr(image_path)
    recognized_text = '\n'.join([' '.join(line) for line in recognized_text])
    
    return output_image, recognized_text

# Custom HTML for interface header with logos and alignment
interface_html = """
<div style="text-align: left; padding: 10px;">
    <div style="background-color: white; padding: 10px; display: inline-block;">
        <img src="https://iitj.ac.in/images/logo/Design-of-New-Logo-of-IITJ-2.png" alt="IITJ Logo" style="width: 100px; height: 100px;">
    </div>
    <img src="https://play-lh.googleusercontent.com/_FXSr4xmhPfBykmNJvKvC0GIAVJmOLhFl6RA5fobCjV-8zVSypxX8yb8ka6zu6-4TEft=w240-h480-rw" alt="Bhashini Logo" style="width: 100px; height: 100px; float: right;">
</div>
"""



# Links to GitHub and Dataset repositories with GitHub icon
links_html = """
<div style="text-align: center; padding-top: 20px;">
    <a href="https://github.com/Bhashini-IITJ/IndicPhotoOCR" target="_blank" style="margin-right: 20px; font-size: 18px; text-decoration: none;">
        GitHub Repository
    </a>
    <a href="https://github.com/Bhashini-IITJ/BharatSceneTextDataset" target="_blank" style="font-size: 18px; text-decoration: none;">
        Dataset Repository
    </a>
</div>
"""

# Custom CSS to style the text box font size
custom_css = """
.custom-textbox textarea {
    font-size: 20px !important;
}
"""

# Create an instance of the Seafoam theme for a consistent visual style
seafoam = Seafoam()

# Define examples for users to try out
examples = [
    ["test_images/image_141.jpg", "hindi"],
    ["test_images/image_1164.jpg", "auto"]
]

title = "<h1 style='text-align: center;'>Developed by IITJ</h1>"


# Define the Gradio interface
iface = gr.Interface(
    fn=process_image,
    inputs=[
        gr.Image(type="pil", image_mode="RGB"), 
        gr.Dropdown(VALID_IDENTIFIER_LANGS, label="Identifier Language", value="hindi")
    ],
    outputs=[
        gr.Image(type="pil", label="Processed Image"), 
        gr.Textbox(label="Recognized Text")
    ],
    title="IndicPhotoOCR - Indic Scene Text Recogniser Toolkit",
    description=title+interface_html+links_html,
    theme=seafoam,
    css=custom_css,
    examples=examples
)

# Server setup and launch configuration
# if __name__ == "__main__":
#     server = "0.0.0.0"  # IP address for server
#     port = 7866  # Port to run the server on
#     iface.launch(server_name=server, server_port=port, share=False)

iface.launch()