Spaces:
Build error
Build error
File size: 50,424 Bytes
f829b9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 |
import rdkit
from rdkit import Chem
from rdkit.Chem import Draw
from rdkit import DataStructs
from rdkit.Chem import AllChem
from rdkit.Chem import rdmolfiles
from rdkit.Chem.Draw import IPythonConsole
from molvs import standardize_smiles
import os
import gc
import sys
import time
import json
import math
import random
import argparse
import itertools
import numpy as np
import mxnet as mx
import pandas as pd
import networkx as nx
from scipy import sparse
from mxnet.gluon import nn
from collections import Counter
from mxnet.autograd import Function
from mxnet.gluon.data import Dataset
from mxnet import gluon, autograd, nd
from mxnet.gluon.data import DataLoader
from abc import ABCMeta, abstractmethod
from mxnet.gluon.data.sampler import Sampler
class MoleculeSpec(object):
def __init__(self, file_name='models_folder/atom_types.txt'):
self.atom_types = []
self.atom_symbols = []
with open(file_name) as f:
for line in f:
atom_type_i = line.strip('\n').split(',')
self.atom_types.append((atom_type_i[0], int(atom_type_i[1]), int(atom_type_i[2])))
if atom_type_i[0] not in self.atom_symbols:
self.atom_symbols.append(atom_type_i[0])
self.bond_orders = [Chem.BondType.AROMATIC,
Chem.BondType.SINGLE,
Chem.BondType.DOUBLE,
Chem.BondType.TRIPLE]
self.max_iter = 120
def get_atom_type(self, atom):
atom_symbol = atom.GetSymbol()
atom_charge = atom.GetFormalCharge()
atom_hs = atom.GetNumExplicitHs()
return self.atom_types.index((atom_symbol, atom_charge, atom_hs))
def get_bond_type(self, bond):
return self.bond_orders.index(bond.GetBondType())
def index_to_atom(self, idx):
atom_symbol, atom_charge, atom_hs = self.atom_types[idx]
a = Chem.Atom(atom_symbol)
a.SetFormalCharge(atom_charge)
a.SetNumExplicitHs(atom_hs)
return a
def index_to_bond(self, mol, begin_id, end_id, idx):
mol.AddBond(begin_id, end_id, self.bond_orders[idx])
@property
def num_atom_types(self):
return len(self.atom_types)
@property
def num_bond_types(self):
return len(self.bond_orders)
_mol_spec = None
def get_mol_spec():
global _mol_spec
if _mol_spec is None:
_mol_spec = MoleculeSpec()
return _mol_spec
def get_graph_from_smiles(smiles):
mol = Chem.MolFromSmiles(smiles)
# build graph
atom_types, atom_ranks, bonds, bond_types = [], [], [], []
for a, r in zip(mol.GetAtoms(), Chem.CanonicalRankAtoms(mol)):
atom_types.append(get_mol_spec().get_atom_type(a))
atom_ranks.append(r)
for b in mol.GetBonds():
idx_1, idx_2, bt = b.GetBeginAtomIdx(), b.GetEndAtomIdx(), get_mol_spec().get_bond_type(b)
bonds.append([idx_1, idx_2])
bond_types.append(bt)
# build nx graph
graph = nx.Graph()
graph.add_nodes_from(range(len(atom_types)))
graph.add_edges_from(bonds)
return graph, atom_types, atom_ranks, bonds, bond_types
def get_graph_from_smiles_list(smiles_list):
graph_list = []
for smiles in smiles_list:
mol = Chem.MolFromSmiles(smiles)
# build graph
atom_types, bonds, bond_types = [], [], []
for a in mol.GetAtoms():
atom_types.append(get_mol_spec().get_atom_type(a))
for b in mol.GetBonds():
idx_1, idx_2, bt = b.GetBeginAtomIdx(), b.GetEndAtomIdx(), get_mol_spec().get_bond_type(b)
bonds.append([idx_1, idx_2])
bond_types.append(bt)
X_0 = np.array(atom_types, dtype=np.int64)
A_0 = np.concatenate([np.array(bonds, dtype=np.int64),
np.array(bond_types, dtype=np.int64)[:, np.newaxis]],
axis=1)
graph_list.append([X_0, A_0])
return graph_list
def traverse_graph(graph, atom_ranks, current_node=None, step_ids=None, p=0.9, log_p=0.0):
if current_node is None:
next_nodes = range(len(atom_ranks))
step_ids = [-1, ] * len(next_nodes)
next_node_ranks = atom_ranks
else:
next_nodes = graph.neighbors(current_node) # get neighbor nodes
next_nodes = [n for n in next_nodes if step_ids[n] < 0] # filter visited nodes
next_node_ranks = [atom_ranks[n] for n in next_nodes] # get ranks for neighbors
next_nodes = [n for n, r in sorted(zip(next_nodes, next_node_ranks), key=lambda _x:_x[1])] # sort by rank
# iterate through neighbors
while len(next_nodes) > 0:
if len(next_nodes)==1:
next_node = next_nodes[0]
elif random.random() >= (1 - p):
next_node = next_nodes[0]
log_p += np.log(p)
else:
next_node = next_nodes[random.randint(1, len(next_nodes) - 1)]
log_p += np.log((1.0 - p) / (len(next_nodes) - 1))
step_ids[next_node] = max(step_ids) + 1
_, log_p = traverse_graph(graph, atom_ranks, next_node, step_ids, p, log_p)
next_nodes = [n for n in next_nodes if step_ids[n] < 0] # filter visited nodes
return step_ids, log_p
def single_reorder(X_0, A_0, step_ids):
X_0, A_0 = np.copy(X_0), np.copy(A_0)
step_ids = np.array(step_ids, dtype=np.int64)
# sort by step_ids
sorted_ids = np.argsort(step_ids)
X_0 = X_0[sorted_ids]
A_0[:, 0], A_0[:, 1] = step_ids[A_0[:, 0]], step_ids[A_0[:, 1]]
max_b, min_b = np.amax(A_0[:, :2], axis=1), np.amin(A_0[:, :2], axis=1)
A_0 = A_0[np.lexsort([-min_b, max_b]), :]
# separate append and connect
max_b, min_b = np.amax(A_0[:, :2], axis=1), np.amin(A_0[:, :2], axis=1)
is_append = np.concatenate([np.array([True]), max_b[1:] > max_b[:-1]])
A_0 = np.concatenate([np.where(is_append[:, np.newaxis],
np.stack([min_b, max_b], axis=1),
np.stack([max_b, min_b], axis=1)),
A_0[:, -1:]], axis=1)
return X_0, A_0
def single_expand(X_0, A_0):
X_0, A_0 = np.copy(X_0), np.copy(A_0)
# expand X
is_append_iter = np.less(A_0[:, 0], A_0[:, 1]).astype(np.int64)
NX = np.cumsum(np.pad(is_append_iter, [[1, 0]], mode='constant', constant_values=1))
shift = np.cumsum(np.pad(NX, [[1, 0]], mode='constant')[:-1])
X_index = np.arange(NX.sum(), dtype=np.int64) - np.repeat(shift, NX)
X = X_0[X_index]
# expand A
_, A_index = np.tril_indices(A_0.shape[0])
A = A_0[A_index, :]
NA = np.arange(A_0.shape[0] + 1)
# get action
# action_type, atom_type, bond_type, append_pos, connect_pos
action_type = 1 - is_append_iter
atom_type = np.where(action_type == 0, X_0[A_0[:, 1]], 0)
bond_type = A_0[:, 2]
append_pos = np.where(action_type == 0, A_0[:, 0], 0)
connect_pos = np.where(action_type == 1, A_0[:, 1], 0)
actions = np.stack([action_type, atom_type, bond_type, append_pos, connect_pos],
axis=1)
last_action = [[2, 0, 0, 0, 0]]
actions = np.append(actions, last_action, axis=0)
action_0 = np.array([X_0[0]], dtype=np.int64)
# }}}
# {{{ Get mask
last_atom_index = shift + NX - 1
last_atom_mask = np.zeros_like(X)
last_atom_mask[last_atom_index] = np.where(
np.pad(is_append_iter, [[1, 0]], mode='constant', constant_values=1) == 1,
np.ones_like(last_atom_index),
np.ones_like(last_atom_index) * 2)
# }}}
return action_0, X, NX, A, NA, actions, last_atom_mask
def get_d(A, X):
_to_sparse = lambda _A, _X: sparse.coo_matrix((np.ones([_A.shape[0] * 2], dtype=np.int64),
(np.concatenate([_A[:, 0], _A[:, 1]], axis=0),
np.concatenate([_A[:, 1], _A[:, 0]], axis=0))),
shape=[_X.shape[0], ] * 2)
A_sparse = _to_sparse(A, X)
d2 = A_sparse * A_sparse
d3 = d2 * A_sparse
# get D_2
D_2 = np.stack(d2.nonzero(), axis=1)
D_2 = D_2[D_2[:, 0] < D_2[:, 1], :]
# get D_3
D_3 = np.stack(d3.nonzero(), axis=1)
D_3 = D_3[D_3[:, 0] < D_3[:, 1], :]
# remove D_1 elements from D_3
D_3_sparse = _to_sparse(D_3, X)
D_3_sparse = D_3_sparse - D_3_sparse.multiply(A_sparse)
D_3 = np.stack(D_3_sparse.nonzero(), axis=1)
D_3 = D_3[D_3[:, 0] < D_3[:, 1], :]
return D_2, D_3
def merge_single_0(X_0, A_0, NX_0, NA_0):
# shift_ids
cumsum = np.cumsum(np.pad(NX_0, [[1, 0]], mode='constant')[:-1])
A_0[:, :2] += np.stack([np.repeat(cumsum, NA_0), ] * 2, axis=1)
# get D
D_0_2, D_0_3 = get_d(A_0, X_0)
# split A
A_split = []
for i in range(get_mol_spec().num_bond_types):
A_i = A_0[A_0[:, 2] == i, :2]
A_split.append(A_i)
A_split.extend([D_0_2, D_0_3])
A_0 = A_split
# NX_rep
NX_rep_0 = np.repeat(np.arange(NX_0.shape[0]), NX_0)
return X_0, A_0, NX_0, NX_rep_0
def merge_single(X, A,
NX, NA,
mol_ids, rep_ids, iw_ids,
action_0, actions,
last_append_mask,
log_p):
X, A, NX, NX_rep = merge_single_0(X, A, NX, NA)
cumsum = np.cumsum(np.pad(NX, [[1, 0]], mode='constant')[:-1])
actions[:, -2] += cumsum * (actions[:, 0] == 0)
actions[:, -1] += cumsum * (actions[:, 0] == 1)
mol_ids_rep = np.repeat(mol_ids, NX)
rep_ids_rep = np.repeat(rep_ids, NX)
return X, A,\
mol_ids_rep, rep_ids_rep, iw_ids,\
last_append_mask,\
NX, NX_rep,\
action_0, actions, \
log_p
def process_single(smiles, k, p):
graph, atom_types, atom_ranks, bonds, bond_types = get_graph_from_smiles(smiles)
# original
X_0 = np.array(atom_types, dtype=np.int64)
A_0 = np.concatenate([np.array(bonds, dtype=np.int64),
np.array(bond_types, dtype=np.int64)[:, np.newaxis]],
axis=1)
X, A = [], []
NX, NA = [], []
mol_ids, rep_ids, iw_ids = [], [], []
action_0, actions = [], []
last_append_mask = []
log_p = []
# random sampling decoding route
for i in range(k):
step_ids_i, log_p_i = traverse_graph(graph, atom_ranks, p=p)
X_i, A_i = single_reorder(X_0, A_0, step_ids_i)
action_0_i, X_i, NX_i, A_i, NA_i, actions_i, last_atom_mask_i = single_expand(X_i, A_i)
# appends
X.append(X_i)
A.append(A_i)
NX.append(NX_i)
NA.append(NA_i)
action_0.append(action_0_i)
actions.append(actions_i)
last_append_mask.append(last_atom_mask_i)
mol_ids.append(np.zeros_like(NX_i, dtype=np.int64))
rep_ids.append(np.ones_like(NX_i, dtype=np.int64) * i)
iw_ids.append(np.ones_like(NX_i, dtype=np.int64) * i)
log_p.append(log_p_i)
# concatenate
X = np.concatenate(X, axis=0)
A = np.concatenate(A, axis = 0)
NX = np.concatenate(NX, axis = 0)
NA = np.concatenate(NA, axis = 0)
action_0 = np.concatenate(action_0, axis = 0)
actions = np.concatenate(actions, axis = 0)
last_append_mask = np.concatenate(last_append_mask, axis = 0)
mol_ids = np.concatenate(mol_ids, axis = 0)
rep_ids = np.concatenate(rep_ids, axis = 0)
iw_ids = np.concatenate(iw_ids, axis = 0)
log_p = np.array(log_p, dtype=np.float32)
return X, A, NX, NA, mol_ids, rep_ids, iw_ids, action_0, actions, last_append_mask, log_p
# noinspection PyArgumentList
def get_mol_from_graph(X, A, sanitize=True):
try:
mol = Chem.RWMol(Chem.Mol())
X, A = X.tolist(), A.tolist()
for i, atom_type in enumerate(X):
mol.AddAtom(get_mol_spec().index_to_atom(atom_type))
for atom_id1, atom_id2, bond_type in A:
get_mol_spec().index_to_bond(mol, atom_id1, atom_id2, bond_type)
except:
return None
if sanitize:
try:
mol = mol.GetMol()
Chem.SanitizeMol(mol)
return mol
except:
return None
else:
return mol
def get_mol_from_graph_list(graph_list, sanitize=True):
mol_list = [get_mol_from_graph(X, A, sanitize) for X, A in graph_list]
return mol_list
class GraphConvFn(Function):
def __init__(self, A):
self.A = A # type: nd.sparse.CSRNDArray
self.A_T = self.A # assume symmetric
super(GraphConvFn, self).__init__()
def forward(self, X):
if self.A is not None:
if len(X.shape) > 2:
X_resized = X.reshape((X.shape[0], -1))
output = nd.sparse.dot(self.A, X_resized)
output = output.reshape([-1, ] + [X.shape[i] for i in range(1, len(X.shape))])
else:
output = nd.sparse.dot(self.A, X)
return output
else:
return nd.zeros_like(X)
def backward(self, grad_output):
if self.A is not None:
if len(grad_output.shape) > 2:
grad_output_resized = grad_output.reshape((grad_output.shape[0], -1))
grad_input = nd.sparse.dot(self.A_T, grad_output_resized)
grad_input = grad_input.reshape([-1] + [grad_output.shape[i]
for i in range(1, len(grad_output.shape))])
else:
grad_input = nd.sparse.dot(self.A_T, grad_output)
return grad_input
else:
return nd.zeros_like(grad_output)
class EfficientGraphConvFn(Function):
"""Save memory by re-computation"""
def __init__(self, A_list):
self.A_list = A_list
super(EfficientGraphConvFn, self).__init__()
def forward(self, X, W):
X_list = [X]
for A in self.A_list:
if A is not None:
X_list.append(nd.sparse.dot(A, X))
else:
X_list.append(nd.zeros_like(X))
X_out = nd.concat(*X_list, dim=1)
self.save_for_backward(X, W)
return nd.dot(X_out, W)
def backward(self, grad_output):
X, W = self.saved_tensors
# recompute X_out
X_list = [X, ]
for A in self.A_list:
if A is not None:
X_list.append(nd.sparse.dot(A, X))
else:
X_list.append(nd.zeros_like(X))
X_out = nd.concat(*X_list, dim=1)
grad_W = nd.dot(X_out.T, grad_output)
grad_X_out = nd.dot(grad_output, W.T)
grad_X_out_list = nd.split(grad_X_out, num_outputs=len(self.A_list) + 1)
grad_X = [grad_X_out_list[0], ]
for A, grad_X_out in zip(self.A_list, grad_X_out_list[1:]):
if A is not None:
grad_X.append(nd.sparse.dot(A, grad_X_out))
else:
grad_X.append(nd.zeros_like(grad_X_out))
grad_X = sum(grad_X)
return grad_X, grad_W
class SegmentSumFn(GraphConvFn):
def __init__(self, idx, num_seg):
# build A
# construct coo
data = nd.ones(idx.shape[0], ctx=idx.context, dtype='int64')
row, col = idx, nd.arange(idx.shape[0], ctx=idx.context, dtype='int64')
shape = (num_seg, int(idx.shape[0]))
sparse = nd.sparse.csr_matrix((data, (row, col)), shape=shape,
ctx=idx.context, dtype='float32')
super(SegmentSumFn, self).__init__(sparse)
sparse = nd.sparse.csr_matrix((data, (col, row)), shape=(shape[1], shape[0]),
ctx=idx.context, dtype='float32')
self.A_T = sparse
def squeeze(input, axis):
assert input.shape[axis] == 1
new_shape = list(input.shape)
del new_shape[axis]
return input.reshape(new_shape)
def unsqueeze(input, axis):
return nd.expand_dims(input, axis=axis)
def logsumexp(inputs, axis=None, keepdims=False):
"""Numerically stable logsumexp.
Args:
inputs: A Variable with any shape.
axis: An integer.
keepdims: A boolean.
Returns:
Equivalent of log(sum(exp(inputs), dim=dim, keepdim=keepdim)).
Adopted from: https://github.com/pytorch/pytorch/issues/2591
"""
# For a 1-D array x (any array along a single dimension),
# log sum exp(x) = s + log sum exp(x - s)
# with s = max(x) being a common choice.
if axis is None:
inputs = inputs.reshape([-1])
axis = 0
s = nd.max(inputs, axis=axis, keepdims=True)
outputs = s + (inputs - s).exp().sum(axis=axis, keepdims=True).log()
if not keepdims:
outputs = nd.sum(outputs, axis=axis, keepdims=False)
return outputs
def get_activation(name):
activation_dict = {
'relu':nd.relu,
'tanh':nd.tanh
}
return activation_dict[name]
class Linear_BN(nn.Sequential):
def __init__(self, F_in, F_out):
super(Linear_BN, self).__init__()
self.add(nn.Dense(F_out, in_units=F_in, use_bias=False))
self.add(BatchNorm(in_channels=F_out))
class GraphConv(nn.Block):
def __init__(self, Fin, Fout, D):
super(GraphConv, self).__init__()
# model settings
self.Fin = Fin
self.Fout = Fout
self.D = D
# model parameters
self.W = self.params.get('w', shape=(self.Fin * (self.D + 1), self.Fout),
init=None, allow_deferred_init=False)
def forward(self, X, A_list):
try:
assert len(A_list) == self.D
except AssertionError as e:
print(self.D, len(A_list))
raise e
return EfficientGraphConvFn(A_list)(X, self.W.data(X.context))
class Policy(nn.Block):
def __init__(self, F_in, F_h, N_A, N_B, k=1):
super(Policy, self).__init__()
self.F_in = F_in # number of input features for each atom
self.F_h = F_h # number of context variables
self.N_A = N_A # number of atom types
self.N_B = N_B # number of bond types
self.k = k # number of softmax used in the mixture
with self.name_scope():
self.linear_h = Linear_BN(F_in * 2, self.F_h * k)
self.linear_h_t = Linear_BN(F_in, self.F_h * k)
self.linear_x = nn.Dense(self.N_B + self.N_B*self.N_A, in_units=self.F_h)
self.linear_x_t = nn.Dense(1, in_units=self.F_h)
if self.k > 1:
self.linear_pi = nn.Dense(self.k, in_units=self.F_in)
else:
self.linear_pi = None
def forward(self, X, NX, NX_rep, X_end=None):
# segment mean for X
if X_end is None:
X_end = SegmentSumFn(NX_rep, NX.shape[0])(X)/nd.cast(fn.unsqueeze(NX, 1), 'float32')
X = nd.concat(X, X_end[NX_rep, :], dim=1)
X_h = nd.relu(self.linear_h(X)).reshape([-1, self.F_h])
X_h_end = nd.relu(self.linear_h_t(X_end)).reshape([-1, self.F_h])
X_x = nd.exp(self.linear_x(X_h)).reshape([-1, self.k, self.N_B + self.N_B*self.N_A])
X_x_end = nd.exp(self.linear_x_t(X_h_end)).reshape([-1, self.k, 1])
X_sum = nd.sum(SegmentSumFn(NX_rep, NX.shape[0])(X_x), -1, keepdims=True) + X_x_end
X_sum_gathered = X_sum[NX_rep, :, :]
X_softmax = X_x / X_sum_gathered
X_softmax_end = X_x_end/ X_sum
if self.k > 1:
pi = unsqueeze(nd.softmax(self.linear_pi(X_end), axis=1), -1)
pi_gathered = pi[NX_rep, :, :]
X_softmax = nd.sum(X_softmax * pi_gathered, axis=1)
X_softmax_end = nd.sum(X_softmax_end * pi, axis=1)
else:
X_softmax = squeeze(X_softmax, 1)
X_softmax_end = squeeze(X_softmax_end, 1)
# generate output probabilities
connect, append = X_softmax[:, :self.N_B], X_softmax[:, self.N_B:]
append = append.reshape([-1, self.N_A, self.N_B])
end = squeeze(X_softmax_end, -1)
return append, connect, end
class BatchNorm(nn.Block):
def __init__(self, in_channels, momentum=0.9, eps=1e-5):
super(BatchNorm, self).__init__()
self.F = in_channels
self.bn_weight = self.params.get('bn_weight', shape=(self.F,), init=mx.init.One(),
allow_deferred_init=False)
self.bn_bias = self.params.get('bn_bias', shape=(self.F,), init=mx.init.Zero(),
allow_deferred_init=False)
self.running_mean = self.params.get('running_mean', grad_req='null',
shape=(self.F,),
init=mx.init.Zero(),
allow_deferred_init=False,
differentiable=False)
self.running_var = self.params.get('running_var', grad_req='null',
shape=(self.F,),
init=mx.init.One(),
allow_deferred_init=False,
differentiable=False)
self.momentum = momentum
self.eps = eps
def forward(self, x):
if autograd.is_training():
return nd.BatchNorm(x,
gamma=self.bn_weight.data(x.context),
beta=self.bn_bias.data(x.context),
moving_mean=self.running_mean.data(x.context),
moving_var=self.running_var.data(x.context),
eps=self.eps, momentum=self.momentum,
use_global_stats=False)
else:
return nd.BatchNorm(x,
gamma=self.bn_weight.data(x.context),
beta=self.bn_bias.data(x.context),
moving_mean=self.running_mean.data(x.context),
moving_var=self.running_var.data(x.context),
eps=self.eps, momentum=self.momentum,
use_global_stats=True)
class MoleculeGenerator(nn.Block):
__metaclass__ = ABCMeta
def __init__(self, N_A, N_B, D, F_e, F_skip, F_c, Fh_policy, activation,
*args, **kwargs):
super(MoleculeGenerator, self).__init__()
self.N_A = N_A
self.N_B = N_B
self.D = D
self.F_e = F_e
self.F_skip = F_skip
self.F_c = list(F_c) if isinstance(F_c, tuple) else F_c
self.Fh_policy = Fh_policy
self.activation = get_activation(activation)
with self.name_scope():
# embeddings
self.embedding_atom = nn.Embedding(self.N_A, self.F_e)
self.embedding_mask = nn.Embedding(3, self.F_e)
# graph conv
self._build_graph_conv(*args, **kwargs)
# fully connected
self.dense = nn.Sequential()
for i, (f_in, f_out) in enumerate(zip([self.F_skip, ] + self.F_c[:-1], self.F_c)):
self.dense.add(Linear_BN(f_in, f_out))
# policy
self.policy_0 = self.params.get('policy_0', shape=[self.N_A, ],
init=mx.init.Zero(),
allow_deferred_init=False)
self.policy_h = Policy(self.F_c[-1], self.Fh_policy, self.N_A, self.N_B)
self.mode = 'loss'
@abstractmethod
def _build_graph_conv(self, *args, **kwargs):
raise NotImplementedError
@abstractmethod
def _graph_conv_forward(self, X, A):
raise NotImplementedError
def _policy_0(self, ctx):
policy_0 = nd.exp(self.policy_0.data(ctx))
policy_0 = policy_0/policy_0.sum()
return policy_0
def _policy(self, X, A, NX, NX_rep, last_append_mask):
# get initial embedding
X = self.embedding_atom(X) + self.embedding_mask(last_append_mask)
# convolution
X = self._graph_conv_forward(X, A)
# linear
X = self.dense(X)
# policy
append, connect, end = self.policy_h(X, NX, NX_rep)
return append, connect, end
def _likelihood(self, init, append, connect, end,
action_0, actions, iw_ids, log_p_sigma,
batch_size, iw_size):
# decompose action:
action_type, node_type, edge_type, append_pos, connect_pos = \
actions[:, 0], actions[:, 1], actions[:, 2], actions[:, 3], actions[:, 4]
_log_mask = lambda _x, _mask: _mask * nd.log(_x + 1e-10) + (1- _mask) * nd.zeros_like(_x)
# init
init = init.reshape([batch_size * iw_size, self.N_A])
index = nd.stack(nd.arange(action_0.shape[0], ctx=action_0.context, dtype='int64'), action_0, axis=0)
loss_init = nd.log(nd.gather_nd(init, index) + 1e-10)
# end
loss_end = _log_mask(end, nd.cast(action_type == 2, 'float32'))
# append
index = nd.stack(append_pos, node_type, edge_type, axis=0)
loss_append = _log_mask(nd.gather_nd(append, index), nd.cast(action_type == 0, 'float32'))
# connect
index = nd.stack(connect_pos, edge_type, axis=0)
loss_connect = _log_mask(nd.gather_nd(connect, index), nd.cast(action_type == 1, 'float32'))
# sum up results
log_p_x = loss_end + loss_append + loss_connect
log_p_x = squeeze(SegmentSumFn(iw_ids, batch_size*iw_size)(unsqueeze(log_p_x, -1)), -1)
log_p_x = log_p_x + loss_init
# reshape
log_p_x = log_p_x.reshape([batch_size, iw_size])
log_p_sigma = log_p_sigma.reshape([batch_size, iw_size])
l = log_p_x - log_p_sigma
l = logsumexp(l, axis=1) - math.log(float(iw_size))
return l
def forward(self, *input):
if self.mode=='loss' or self.mode=='likelihood':
X, A, iw_ids, last_append_mask, \
NX, NX_rep, action_0, actions, log_p, \
batch_size, iw_size = input
init = self._policy_0(X.context).tile([batch_size * iw_size, 1])
append, connect, end = self._policy(X, A, NX, NX_rep, last_append_mask)
l = self._likelihood(init, append, connect, end, action_0, actions, iw_ids, log_p, batch_size, iw_size)
if self.mode=='likelihood':
return l
else:
return -l.mean()
elif self.mode == 'decode_0':
return self._policy_0(input[0])
elif self.mode == 'decode_step':
X, A, NX, NX_rep, last_append_mask = input
return self._policy(X, A, NX, NX_rep, last_append_mask)
class MoleculeGenerator_RNN(MoleculeGenerator):
__metaclass__ = ABCMeta
def __init__(self, N_A, N_B, D, F_e, F_skip, F_c, Fh_policy, activation,
N_rnn, *args, **kwargs):
super(MoleculeGenerator_RNN, self).__init__(N_A, N_B, D, F_e, F_skip, F_c, Fh_policy, activation,
*args, **kwargs)
self.N_rnn = N_rnn
with self.name_scope():
self.rnn = gluon.rnn.GRU(hidden_size=self.F_c[-1],
num_layers=self.N_rnn,
layout='NTC', input_size=self.F_c[-1] * 2)
def _rnn_train(self, X, NX, NX_rep, graph_to_rnn, rnn_to_graph, NX_cum):
X_avg = SegmentSumFn(NX_rep, NX.shape[0])(X) / nd.cast(unsqueeze(NX, 1), 'float32')
X_curr = nd.take(X, indices=NX_cum-1)
X = nd.concat(X_avg, X_curr, dim=1)
# rnn
X = nd.take(X, indices=graph_to_rnn) # batch_size, iw_size, length, num_features
batch_size, iw_size, length, num_features = X.shape
X = X.reshape([batch_size*iw_size, length, num_features])
X = self.rnn(X)
X = X.reshape([batch_size, iw_size, length, -1])
X = nd.gather_nd(X, indices=rnn_to_graph)
return X
def _rnn_test(self, X, NX, NX_rep, NX_cum, h):
# note: one partition for one molecule
X_avg = SegmentSumFn(NX_rep, NX.shape[0])(X) / nd.cast(unsqueeze(NX, 1), 'float32')
X_curr = nd.take(X, indices=NX_cum - 1)
X = nd.concat(X_avg, X_curr, dim=1) # size: [NX, F_in * 2]
# rnn
X = unsqueeze(X, axis=1)
X, h = self.rnn(X, h)
X = squeeze(X, axis=1)
return X, h
def _policy(self, X, A, NX, NX_rep, last_append_mask, graph_to_rnn, rnn_to_graph, NX_cum):
# get initial embedding
X = self.embedding_atom(X) + self.embedding_mask(last_append_mask)
# convolution
X = self._graph_conv_forward(X, A)
# linear
X = self.dense(X)
# rnn
X_mol = self._rnn_train(X, NX, NX_rep, graph_to_rnn, rnn_to_graph, NX_cum)
# policy
append, connect, end = self.policy_h(X, NX, NX_rep, X_mol)
return append, connect, end
def _decode_step(self, X, A, NX, NX_rep, last_append_mask, NX_cum, h):
# get initial embedding
X = self.embedding_atom(X) + self.embedding_mask(last_append_mask)
# convolution
X = self._graph_conv_forward(X, A)
# linear
X = self.dense(X)
# rnn
X_mol, h = self._rnn_test(X, NX, NX_rep, NX_cum, h)
# policy
append, connect, end = self.policy_h(X, NX, NX_rep, X_mol)
return append, connect, end, h
def forward(self, *input):
if self.mode=='loss' or self.mode=='likelihood':
X, A, iw_ids, last_append_mask, \
NX, NX_rep, action_0, actions, log_p, \
batch_size, iw_size, \
graph_to_rnn, rnn_to_graph, NX_cum = input
init = self._policy_0(X.context).tile([batch_size * iw_size, 1])
append, connect, end = self._policy(X, A, NX, NX_rep, last_append_mask, graph_to_rnn, rnn_to_graph, NX_cum)
l = self._likelihood(init, append, connect, end, action_0, actions, iw_ids, log_p, batch_size, iw_size)
if self.mode=='likelihood':
return l
else:
return -l.mean()
elif self.mode == 'decode_0':
return self._policy_0(input[0])
elif self.mode == 'decode_step':
X, A, NX, NX_rep, last_append_mask, NX_cum, h = input
return self._decode_step(X, A, NX, NX_rep, last_append_mask, NX_cum, h)
else:
raise ValueError
class _TwoLayerDense(nn.Block):
def __init__(self, input_size, hidden_size, output_size):
super(_TwoLayerDense, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.input_size = input_size
with self.name_scope():
# config 1
self.input = nn.Dense(self.hidden_size, use_bias=False, in_units=self.input_size)
self.bn_input = BatchNorm(in_channels=hidden_size)
self.output = nn.Dense(self.output_size, use_bias=True, in_units=self.hidden_size)
# config 2
#self.output = nn.Dense(self.output_size, use_bias=True, in_units=self.input_size)
# config 3
#self.input1 = nn.Dense(self.hidden_size, use_bias=False, in_units=self.input_size)
#self.bn_input1 = BatchNorm(in_channels=self.hidden_size)
#self.input2 = nn.Dense(self.hidden_size, use_bias=False, in_units=self.hidden_size)
#self.bn_input2 = BatchNorm(in_channels=self.hidden_size)
#self.output = nn.Dense(self.output_size, use_bias=True, in_units=self.hidden_size)
# config 4
#self.bn_input = BatchNorm(in_channels=self.input_size)
#self.output = nn.Dense(self.output_size, use_bias=True, in_units=self.input_size)
# config 5
#self.bn_input = BatchNorm(in_channels=1024)
#self.output = nn.Dense(self.output_size, use_bias=True, in_units=1024)
def forward(self, c):
# config 1
return nd.softmax(self.output(nd.relu(self.bn_input(self.input(c)))), axis=-1)
# config 2
#return nd.softmax(self.output(c), axis=-1)
# config 3
#return nd.softmax(self.output(nd.relu(self.bn_input2(self.input2(nd.relu(self.bn_input1(self.input1(c))))))), axis=-1)
# config 4
#return nd.softmax(self.output(nd.relu(self.bn_input(c))), axis=-1)
# config 5
#return nd.softmax(self.output(c), axis=-1)
class CMoleculeGenerator_RNN(MoleculeGenerator_RNN):
__metaclass__ = ABCMeta
def __init__(self, N_A, N_B, N_C, D,
F_e, F_skip, F_c, Fh_policy,
activation, N_rnn,
*args, **kwargs):
self.N_C = N_C # number of conditional variables
super(CMoleculeGenerator_RNN, self).__init__(N_A, N_B, D,
F_e, F_skip, F_c, Fh_policy,
activation, N_rnn,
*args, **kwargs)
with self.name_scope():
self.dense_policy_0 = _TwoLayerDense(self.N_C, self.N_A * 3, self.N_A)
@abstractmethod
def _graph_conv_forward(self, X, A, c, ids):
raise NotImplementedError
def _policy_0(self, c):
return self.dense_policy_0(c) + 0.0 * self.policy_0.data(c.context)
def _policy(self, X, A, NX, NX_rep, last_append_mask,
graph_to_rnn, rnn_to_graph, NX_cum,
c, ids):
# get initial embedding
X = self.embedding_atom(X) + self.embedding_mask(last_append_mask)
# convolution
X = self._graph_conv_forward(X, A, c, ids)
# linear
X = self.dense(X)
# rnn
X_mol = self._rnn_train(X, NX, NX_rep, graph_to_rnn, rnn_to_graph, NX_cum)
# policy
append, connect, end = self.policy_h(X, NX, NX_rep, X_mol)
return append, connect, end
def _decode_step(self, X, A, NX, NX_rep, last_append_mask, NX_cum, h, c, ids):
# get initial embedding
X = self.embedding_atom(X) + self.embedding_mask(last_append_mask)
# convolution
X = self._graph_conv_forward(X, A, c, ids)
# linear
X = self.dense(X)
# rnn
X_mol, h = self._rnn_test(X, NX, NX_rep, NX_cum, h)
# policy
append, connect, end = self.policy_h(X, NX, NX_rep, X_mol)
return append, connect, end, h
def forward(self, *input):
if self.mode=='loss' or self.mode=='likelihood':
X, A, iw_ids, last_append_mask, \
NX, NX_rep, action_0, actions, log_p, \
batch_size, iw_size, \
graph_to_rnn, rnn_to_graph, NX_cum, \
c, ids = input
init = nd.tile(unsqueeze(self._policy_0(c), axis=1), [1, iw_size, 1])
append, connect, end = self._policy(X, A, NX, NX_rep, last_append_mask,
graph_to_rnn, rnn_to_graph, NX_cum,
c, ids)
l = self._likelihood(init, append, connect, end,
action_0, actions, iw_ids, log_p,
batch_size, iw_size)
if self.mode=='likelihood':
return l
else:
return -l.mean()
elif self.mode == 'decode_0':
return self._policy_0(*input)
elif self.mode == 'decode_step':
X, A, NX, NX_rep, last_append_mask, NX_cum, h, c, ids = input
return self._decode_step(X, A, NX, NX_rep, last_append_mask, NX_cum, h, c, ids)
else:
raise ValueError
class CVanillaMolGen_RNN(CMoleculeGenerator_RNN):
def __init__(self, N_A, N_B, N_C, D,
F_e, F_h, F_skip, F_c, Fh_policy,
activation, N_rnn, rename=False):
self.rename = rename
super(CVanillaMolGen_RNN, self).__init__(N_A, N_B, N_C, D,
F_e, F_skip, F_c, Fh_policy,
activation, N_rnn,
F_h)
def _build_graph_conv(self, F_h):
self.F_h = list(F_h) if isinstance(F_h, tuple) else F_h
self.conv, self.bn = [], []
for i, (f_in, f_out) in enumerate(zip([self.F_e] + self.F_h[:-1], self.F_h)):
conv = GraphConv(f_in, f_out, self.N_B + self.D)
self.conv.append(conv)
self.register_child(conv)
if i != 0:
bn = BatchNorm(in_channels=f_in)
self.register_child(bn)
else:
bn = None
self.bn.append(bn)
self.bn_skip = BatchNorm(in_channels=sum(self.F_h))
self.linear_skip = Linear_BN(sum(self.F_h), self.F_skip)
# projectors for conditional variable (protein embedding)
self.linear_c = []
for i, f_out in enumerate(self.F_h):
if self.rename:
linear_c = nn.Dense(f_out, use_bias=False, in_units=self.N_C, prefix='cond_{}'.format(i))
else:
linear_c = nn.Dense(f_out, use_bias=False, in_units=self.N_C)
self.register_child(linear_c)
self.linear_c.append(linear_c)
def _graph_conv_forward(self, X, A, c, ids):
X_out = [X]
for conv, bn, linear_c in zip(self.conv, self.bn, self.linear_c):
X = X_out[-1]
if bn is not None:
X_out.append(conv(self.activation(bn(X)), A) + linear_c(c)[ids, :])
else:
X_out.append(conv(X, A) + linear_c(c)[ids, :])
X_out = nd.concat(*X_out[1:], dim=1)
return self.activation(self.linear_skip(self.activation(self.bn_skip(X_out))))
def _decode_step(X, A, NX, NA, last_action, finished,
get_init, get_action,
random=False, n_node_types=get_mol_spec().num_atom_types,
n_edge_types=get_mol_spec().num_bond_types):
if X is None:
init = get_init()
if random:
X = []
for i in range(init.shape[0]):
# init probabilities(for first atom)
p = init[i, :]
# Random sampling using init probability distribution
selected_atom = np.random.choice(np.arange(init.shape[1]), 1, p=p)[0]
X.append(selected_atom)
X = np.array(X, dtype=np.int64)
else:
X = np.argmax(init, axis=1)
A = np.zeros((0, 3), dtype=np.int64)
NX = last_action = np.ones([X.shape[0]], dtype=np.int64)
NA = np.zeros([X.shape[0]], dtype=np.int64)
finished = np.array([False, ] * X.shape[0], dtype=np.bool)
return X, A, NX, NA, last_action, finished
else:
X_u = X[np.repeat(np.logical_not(finished), NX)]
A_u = A[np.repeat(np.logical_not(finished), NA), :]
NX_u = NX[np.logical_not(finished)]
NA_u = NA[np.logical_not(finished)]
last_action_u = last_action[np.logical_not(finished)]
# conv
mol_ids_rep = NX_rep = np.repeat(np.arange(NX_u.shape[0]), NX_u)
rep_ids_rep = np.zeros_like(mol_ids_rep)
if A.shape[0] == 0:
D_2 = D_3 = np.zeros((0, 2), dtype=np.int64)
A_u = [np.zeros((0, 2), dtype=np.int64) for _ in range(get_mol_spec().num_bond_types)]
A_u += [D_2, D_3]
else:
cumsum = np.cumsum(np.pad(NX_u, [[1, 0]], mode='constant')[:-1])
shift = np.repeat(cumsum, NA_u)
A_u[:, :2] += np.stack([shift, ] * 2, axis=1)
D_2, D_3 = get_d(A_u, X_u)
A_u = [A_u[A_u[:, 2] == _i, :2] for _i in range(n_edge_types)]
A_u += [D_2, D_3]
mask = np.zeros([X_u.shape[0]], dtype=np.int64)
last_append_index = np.cumsum(NX_u) - 1
mask[last_append_index] = np.where(last_action_u == 1,
np.ones_like(last_append_index, dtype=np.int64),
np.ones_like(last_append_index, dtype=np.int64) * 2)
decode_input = [X_u, A_u, NX_u, NX_rep, mask, mol_ids_rep, rep_ids_rep]
append, connect, end = get_action(decode_input)
if A.shape[0] == 0:
max_index = np.argmax(np.reshape(append, [-1, n_node_types * n_edge_types]), axis=1)
atom_type, bond_type = np.unravel_index(max_index, [n_node_types, n_edge_types])
X = np.reshape(np.stack([X, atom_type], axis=1), [-1])
NX = np.array([2, ] * len(finished), dtype=np.int64)
A = np.stack([np.zeros([len(finished), ], dtype=np.int64),
np.ones([len(finished), ], dtype=np.int64),
bond_type], axis=1)
NA = np.ones([len(finished), ], dtype=np.int64)
last_action = np.ones_like(NX, dtype=np.int64)
else:
# process for each molecule
append, connect = np.split(append, np.cumsum(NX_u)), np.split(connect, np.cumsum(NX_u))
end = end.tolist()
unfinished_ids = np.where(np.logical_not(finished))[0].tolist()
cumsum = np.cumsum(NX)
cumsum_a = np.cumsum(NA)
X_insert = []
X_insert_ids = []
A_insert = []
A_insert_ids = []
finished_ids = []
for i, (unfinished_id, append_i, connect_i, end_i) \
in enumerate(zip(unfinished_ids, append, connect, end)):
if random:
def _rand_id(*_x):
_x_reshaped = [np.reshape(_xi, [-1]) for _xi in _x]
_x_length = np.array([_x_reshape_i.shape[0] for _x_reshape_i in _x_reshaped],
dtype=np.int64)
_begin = np.cumsum(np.pad(_x_length, [[1, 0]], mode='constant')[:-1])
_end = np.cumsum(_x_length) - 1
_p = np.concatenate(_x_reshaped)
_p = _p / np.sum(_p)
# Count NaN values
num_nan = np.isnan(_p).sum()
if num_nan > 0:
print(f'Number of NaN values in _p: {num_nan}')
_rand_index = np.random.choice(np.arange(len(_p)), 1)[0]
else:
_rand_index = np.random.choice(np.arange(_p.shape[0]), 1, p=_p)[0]
_p_step = _p[_rand_index]
_x_index = np.where(np.logical_and(_begin <= _rand_index, _end >= _rand_index))[0][0]
_rand_index = _rand_index - _begin[_x_index]
_rand_index = np.unravel_index(_rand_index, _x[_x_index].shape)
return _x_index, _rand_index, _p_step
action_type, action_index, p_step = _rand_id(append_i, connect_i, np.array([end_i]))
else:
_argmax = lambda _x: np.unravel_index(np.argmax(_x), _x.shape)
append_id, append_val = _argmax(append_i), np.max(append_i)
connect_id, connect_val = _argmax(connect_i), np.max(connect_i)
end_val = end_i
if end_val >= append_val and end_val >= connect_val:
action_type = 2
action_index = None
elif append_val >= connect_val and append_val >= end_val:
action_type = 0
action_index = append_id
else:
action_type = 1
action_index = connect_id
if action_type == 2:
# finish growth
finished_ids.append(unfinished_id)
elif action_type == 0:
# append action
append_pos, atom_type, bond_type = action_index
X_insert.append(atom_type)
X_insert_ids.append(unfinished_id)
A_insert.append([append_pos, NX[unfinished_id], bond_type])
A_insert_ids.append(unfinished_id)
else:
# connect
connect_ps, bond_type = action_index
A_insert.append([NX[unfinished_id] - 1, connect_ps, bond_type])
A_insert_ids.append(unfinished_id)
if len(A_insert_ids) > 0:
A = np.insert(A, cumsum_a[A_insert_ids], A_insert, axis=0)
NA[A_insert_ids] += 1
last_action[A_insert_ids] = 0
if len(X_insert_ids) > 0:
X = np.insert(X, cumsum[X_insert_ids], X_insert, axis=0)
NX[X_insert_ids] += 1
last_action[X_insert_ids] = 1
if len(finished_ids) > 0:
finished[finished_ids] = True
# print finished
return X, A, NX, NA, last_action, finished
class Builder(object, metaclass=ABCMeta):
def __init__(self, model_loc, gpu_id=None):
with open(os.path.join(model_loc, 'configs.json')) as f:
configs = json.load(f)
self.mdl = self.__class__._get_model(configs)
self.ctx = mx.gpu(gpu_id) if gpu_id is not None else mx.cpu()
self.mdl.load_parameters(os.path.join(model_loc, 'ckpt.params'), ctx=self.ctx, allow_missing=True)
@staticmethod
def _get_model(configs):
raise NotImplementedError
@abstractmethod
def sample(self, num_samples, *args, **kwargs):
raise NotImplementedError
class CVanilla_RNN_Builder(Builder):
@staticmethod
def _get_model(configs):
return CVanillaMolGen_RNN(get_mol_spec().num_atom_types, get_mol_spec().num_bond_types, D=2, **configs)
def sample(self, num_samples, c, output_type='mol', sanitize=True, random=True):
if len(c.shape) == 1:
c = np.stack([c, ]*num_samples, axis=0)
with autograd.predict_mode():
# step one
finished = [False, ] * num_samples
def get_init():
self.mdl.mode = 'decode_0'
_c = nd.array(c, dtype='float32', ctx=self.ctx)
init = self.mdl(_c).asnumpy()
return init
outputs = _decode_step(X=None, A=None, NX=None, NA=None, last_action=None, finished=finished,
get_init=get_init, get_action=None,
n_node_types=self.mdl.N_A, n_edge_types=self.mdl.N_B,
random=random)
# If outputs is None
if outputs is None:
return None
X, A, NX, NA, last_action, finished = outputs
count = 1
h = np.zeros([self.mdl.N_rnn, num_samples, self.mdl.F_c[-1]], dtype=np.float32)
while not np.all(finished) and count < 100:
def get_action(inputs):
self.mdl.mode = 'decode_step'
_h = nd.array(h[:, np.logical_not(finished), :], ctx=self.ctx, dtype='float32')
_c = nd.array(c[np.logical_not(finished), :], ctx=self.ctx, dtype='float32')
_X, _A_sparse, _NX, _NX_rep, _mask, _NX_cum = self.to_nd(inputs)
_append, _connect, _end, _h = self.mdl(_X, _A_sparse, _NX, _NX_rep, _mask, _NX_cum, _h, _c, _NX_rep)
h[:, np.logical_not(finished), :] = _h[0].asnumpy()
return _append.asnumpy(), _connect.asnumpy(), _end.asnumpy()
outputs = _decode_step(X, A, NX, NA, last_action, finished,
get_init=None, get_action=get_action,
n_node_types=self.mdl.N_A, n_edge_types=self.mdl.N_B,
random=random)
X, A, NX, NA, last_action, finished = outputs
count += 1
graph_list = []
cumsum_X_ = np.cumsum(np.pad(NX, [[1, 0]], mode='constant')).tolist()
cumsum_A_ = np.cumsum(np.pad(NA, [[1, 0]], mode='constant')).tolist()
for cumsum_A_pre, cumsum_A_post, \
cumsum_X_pre, cumsum_X_post in zip(cumsum_A_[:-1], cumsum_A_[1:],
cumsum_X_[:-1], cumsum_X_[1:]):
graph_list.append([X[cumsum_X_pre:cumsum_X_post], A[cumsum_A_pre:cumsum_A_post, :]])
if output_type=='graph':
return graph_list
elif output_type == 'mol':
return get_mol_from_graph_list(graph_list, sanitize)
elif output_type == 'smiles':
mol_list = get_mol_from_graph_list(graph_list, sanitize=True)
smiles_list = [Chem.MolToSmiles(m) if m is not None else None for m in mol_list]
return smiles_list
else:
raise ValueError('Unrecognized output type')
def to_nd(self, inputs):
X, A, NX, NX_rep, mask = inputs[:-2]
NX_cum = np.cumsum(NX)
# convert to ndarray
_to_ndarray = lambda _x: nd.array(_x, self.ctx, 'int64')
X, NX, NX_rep, mask, NX_cum = \
_to_ndarray(X), _to_ndarray(NX), _to_ndarray(NX_rep), _to_ndarray(mask), _to_ndarray(NX_cum)
A_sparse = []
for _A_i in A:
if _A_i.shape[0] == 0:
A_sparse.append(None)
else:
# transpose may not be supported in gpu
_A_i = np.concatenate([_A_i, _A_i[:, [1, 0]]], axis=0)
# construct csr matrix ...
_data = np.ones((_A_i.shape[0],), dtype=np.float32)
_row, _col = _A_i[:, 0], _A_i[:, 1]
_A_sparse_i = nd.sparse.csr_matrix((_data, (_row, _col)),
shape=tuple([int(X.shape[0]), ] * 2),
ctx=self.ctx, dtype='float32')
# append to list
A_sparse.append(_A_sparse_i)
return X, A_sparse, NX, NX_rep, mask, NX_cum
|