import test_ import mdtex2html import gradio as gr from transformers import AutoModel, AutoTokenizer, AutoConfig def postprocess(self, y): if y is None: return [] for i, (message, response) in enumerate(y): y[i] = ( None if message is None else mdtex2html.convert((message)), None if response is None else mdtex2html.convert(response), ) return y gr.Chatbot.postprocess = postprocess def parse_codeblock(text): lines = text.split("\n") for i, line in enumerate(lines): if "```" in line: if line != "```": lines[i] = f'
'
            else:
                lines[i] = '
' else: if i > 0: lines[i] = "
" + line.replace("<", "<").replace(">", ">") return "".join(lines) def predict(input, chatbot, history): # map_ = {'1': '2', '2': '2', '3': '4'} chatbot.append((input, "")) response = test_.map_(input_text=input) # print(response) # print(response) chatbot[-1] = (parse_codeblock(input), parse_codeblock(response)) return chatbot, history def reset_user_input(): return gr.update(value='') def reset_state(): return [], [] with gr.Blocks() as demo: gr.HTML("""

错误分类

""") # gr.Markdown("Start typing below and then click **Run** to see the output.") chatbot = gr.Chatbot() with gr.Row(): with gr.Column(scale=4): with gr.Column(scale=12): # user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style( # container=False) user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10, container=False) with gr.Column(min_width=32, scale=1): submitBtn = gr.Button("Submit", variant="primary") with gr.Column(scale=1): emptyBtn = gr.Button("Clear History") # max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) # top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True) # temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True) history = gr.State([]) submitBtn.click(predict, [user_input, chatbot, history], [chatbot, history], show_progress=True) submitBtn.click(reset_user_input, [], [user_input]) emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True) demo.queue().launch(share=False, inbrowser=True)