Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from datasets import load_dataset | |
dataset = load_dataset("zeroshot/twitter-financial-news-sentiment", ) | |
intf = gr.Interface(fn=None, input=None, outputs=dataset['train'][:10]) | |
intf.launch() | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased") | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
def sentiment_score(review): | |
tokens = tokenizer.encode(review, return_tensors='pt') | |
result = model(tokens) | |
return int(torch.argmax(result.logits)) | |
dataset['sentiment'] = dataset['text'].apply(lambda x: sentiment_score(x[:512])) | |
""" | |
categories = ('Car in good condition','Damaged Car') | |
def is_car(x) : return x[0].isupper() | |
def image_classifier(img): | |
pred,index,probs = learn.predict(img) | |
return dict(zip(categories, map(float,probs))) | |
# image = gr.inputs.Image(shape=(192,192)) | |
image = gr.components.Image(shape=(192,192)) | |
label = gr.components.Label() | |
examples = ['./car.jpg','./crash.jpg','./carf.jpg'] | |
intf = gr.Interface(fn= image_classifier,inputs=image,outputs=label,examples=examples) | |
intf.launch()""" |