File size: 4,360 Bytes
76f2392 51a0881 de3e0a3 17e7bb2 de3e0a3 76f2392 b5403e9 76f2392 b5403e9 76f2392 b5403e9 76f2392 110c73f 76f2392 124ef84 76f2392 b5403e9 76f2392 ed26cb6 422b355 b5403e9 422b355 76f2392 b5403e9 9fb571c 76f2392 9fb571c 51a0881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import json
import os
import shutil
import requests
import gradio as gr
from huggingface_hub import Repository, InferenceClient
HF_TOKEN = os.environ.get("HF_TOKEN", None)
USER_NAME = os.environ.get("USER_NAME", None)
APP_PASSWORD = os.environ.get("APP_PASSWORD", None)
# Define the model URL using the model_name
model_url = 'https://api-inference.huggingface.co/models/google/flan-t5-small'
# Create the InferenceClient
client = InferenceClient(model_url, headers={"Authorization": f"Bearer {HF_TOKEN}"})
STOP_SEQUENCES = ["\nUser:", "<|endoftext|>", " User:", "###"]
EXAMPLES = [
["Please explain me about machine learning"],
["Do you know about python programming? Please create simple application for me."],
["What is the history of AI?"],
["Can you tell me more about Data Science?"],
["Can you write a short tweet about the release of our latest AI model, Falcon 180B LLM?"]
]
def format_prompt(message, history, system_prompt):
prompt = ""
if system_prompt:
prompt += f"System: {system_prompt}\n"
for user_prompt, bot_response in history:
prompt += f"User: {user_prompt}\n"
prompt += f"GuruAI: {bot_response}\n" # Response already contains "GuruAI: "
prompt += f"""User: {message}
GuruAI:"""
return prompt
seed = 42
def generate(
prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
global seed
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
stop_sequences=STOP_SEQUENCES,
do_sample=True,
seed=seed,
)
seed = seed + 1
formatted_prompt = format_prompt(prompt, history, system_prompt)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
for stop_str in STOP_SEQUENCES:
if output.endswith(stop_str):
output = output[:-len(stop_str)]
output = output.rstrip()
yield output
yield output
return output
additional_inputs=[
gr.Textbox("", label="Optional system prompt"),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1088,
minimum=0,
maximum=8192,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=0.4):
gr.Image("https://padek.jawapos.com/wp-content/uploads/2022/10/861213472.jpg", elem_id="banner-image", show_label=False)
with gr.Column():
gr.Markdown(
"""
# GuruAI
This is AI as Teacher, It will teach you about anything.
⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words.
Example:
Model Name = "tiiuae/falcon-180B-chat"
"""
)
gr.ChatInterface(
generate,
examples=EXAMPLES,
additional_inputs=additional_inputs,
)
demo.queue(concurrency_count=100, api_open=True).launch(show_api=True, auth=(USER_NAME, APP_PASSWORD))
|