File size: 3,169 Bytes
1db46cf 75d538e 1db46cf 75d538e 1db46cf 75d538e 1db46cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import streamlit as st
import json
import requests
import time
from newspaper import Article
# Page title layout
c1, c2 = st.columns([0.32, 2])
with c1:
st.image("https://github.com/ivnlee/streamlit-text-summarizer/blob/main/images/newspaper.png", width=85)
with c2:
st.title("FastNews Article Summarizer")
st.markdown("**Generate summaries of articles and blog posts using abstractive summarization with Google's Pegasus language model.**")
st.caption("Created by Bayhaqy.")
# Sidebar content
st.sidebar.subheader("About the app")
st.sidebar.info("This app uses 🤗HuggingFace's [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) model.")
st.sidebar.write("\n\n")
st.sidebar.markdown("**Get a free API key from HuggingFace:**")
st.sidebar.markdown("* Create a [free account](https://huggingface.co/join) or [login](https://huggingface.co/login)")
st.sidebar.markdown("* Go to **Settings** and then **Access Tokens**")
st.sidebar.markdown("* Create a new Token (select 'read' role)")
st.sidebar.markdown("* Paste your API key in the text box")
st.sidebar.divider()
st.sidebar.write("Please make sure your article is in English and is not behind a paywall.")
st.sidebar.write("\n\n")
st.sidebar.divider()
# Inputs
st.subheader("Enter the URL of the article you want to summarize")
default_url = "https://"
url = st.text_input("URL:", default_url)
headers_ = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36'
}
fetch_button = st.button("Fetch article")
if fetch_button:
article_url = url
session = requests.Session()
try:
response_ = session.get(article_url, headers=headers_, timeout=10)
if response_.status_code == 200:
with st.spinner('Fetching your article...'):
time.sleep(3)
st.success('Your article is ready for summarization!')
else:
st.write("Error occurred while fetching article.")
except Exception as e:
st.write(f"Error occurred while fetching article: {e}")
# HuggingFace API KEY input
API_KEY = st.text_input("Enter your HuggingFace API key", type="password")
# HuggingFace API inference URL.
API_URL = "https://api-inference.huggingface.co/models/google/pegasus-cnn_dailymail"
headers = {"Authorization": f"Bearer {API_KEY}"}
submit_button = st.button("Submit")
# Download and parse the article
if submit_button:
article = Article(url)
article.download()
article.parse()
title = article.title
text = article.text
# HuggingFace API request function
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
with st.spinner('Doing some AI magic, please wait...'):
time.sleep(1)
# Query the API
output = query({"inputs": text, })
# Display the results
summary = output[0]['summary_text'].replace('<n>', " ")
st.divider()
st.subheader("Summary")
st.write(f"Your article: **{title}**")
st.write(f"**{summary}**") |